Ray Tracing in Earnest

D.A. Forsyth
(using material from John Hart and others)

Accurate intersection

Efficient intersection

Improved rendering

® anti aliasing (= more rays)

® motion blur (= more rays)

® more complex illumination phenomena (= more rays, caching)

Reminder: Scene Graphs

Hierarchical representation of all S

5 o Xlate 2:0:0
objects 1n scene
® familiar from raster graphics, etc

Transformation nodes now:

® [Intersect children with ray
® transform ray to child’s frame
® j.c.inverted from usual

® Returned normal must be in world frame
® |.e. transpose(inverse(T))

® Maintain inverse(T)

Reminder: Instancing

Scale 2,2,2
Xlate 2,0,0 Xlate 2,2,0

Scene graph is a hierarchy

Not necessarily a tree I
Directed acyclic graph (DAG)

Nodes may have multiple
parents

Instance

® Appearance of each node’s geometry
in scene

oY)
-
oy
Q
-
<
~—
N
-
o y—
<=
=
=
-
)
[

Amanatides

Implicit Surfaces

Surface is:
points in vector form:
ray 1s:

Intersections are:

Accurate Intersection: Computing roots

® Options: numerical root finding

® Newton’s method with deflation

® Bracketing with Sturm sequence
[

Newton’s method

Estimate 1s:

Observe that:

so update is:

Practicalities

Deflation: if you have found a root, divide the polynomial
by (t-root) to reduce degree

Newton’s method can behave badly
® start in a good place
® c.g. root from previous ray with this object

Newton’s method not efficient for shadow rays
Newton’s method doesn’t guarantee closest root

Sturm sequences

® Build a sequence of polynomials

po(t) = f(t)
p1(t) = fz—];

Pk (t) — _rem(pk—Qapk—l)

Pm
0

® (where rem stands for remainder; f should not have repeated roots)

Sturm sequences

e write 0 () for the number of sign changes in

(p0(€)7p1(€)7p2(§)7 "'7pm(§))

® then for a<b, number of real roots in (a, b] 1s

o(a) —o(b)

Sturm sequences: example

po =t + 3t — 1
p1=3t2+6t sopo=(t/3)p1+ (1/3)p1 — 2t — 1
po =2t + 1
p3 = constant

CSG

® (Constructive Solid Geometry
® objects are boolean combinations of
primitive volumes
® union, intersection, difference
® usually regularized

Regularizing CSG

Primitives can produce non-volumes
® c.g. Aintersect B in pic gives line

Regularize
o eg

A N* B = closure (interior(A) N interior(B))

This makes the line go away. (ex: how do you regularize union, difference?)

Raytracing CSG

® Represent all intersections in a
hit record
® Jist

® [f we know where focal point
1s (in/out), parity classifies all
others

Raytracing CSG

® List of t-values for A, B w/in-out

classification

o A.t list={0.9,3.1} = {0.9in, 3.1out}

® B.t list={2.5,4.5} = {2.5in, 4.50ut}
® Use dot(r.d,n) to determine in,out

® Merge both lists into a single t-

ordered list
® { 09Ain Bout, *
2.5 Ain Bin, .
3.1 Aout Bin,
4.5 Aout Bout } _
® Keep track of A and B in/out ‘
classification

Making Ray Tracing Faster

® (Coherence

® Image coherence: rays through
nearby pixels go through nearby
things
Spatial coherence: similar rays go
through similar things
Temporal coherence: the same ray
at the next time goes through

similar things
Stanford Bunny
~70K triangles

Do we need 70K ray-triangle
intersections for each ray?

Item buffer

e Use conventional z-buffer renderer to render surfaces
® shade with pointer, not illumination
® this gives pointer to closest surface
® not much used now (ex: why?)

Shadow Caching

® Any interloper between surface
point x and the light source s will

cast a shadow
® Doesn’t matter how many

Neighboring shadowed surface @
points x and x’ probably

shadowed by the same object

® Start shadow ray intersection search with
object intersected in last shadow search

® Doesn’t matter which is closest
® Stop ray intersections once any
intersection found

Bounding Volume

® Ray-bunny intersection takes 70K
ray-triangle intersections even if
ray misses the bunny

® Place a sphere around bunny
® Ray 4 misses sphere so ray A misses

bunny without checking 70K ray-triangle
intersections

Ray B intersects sphere but still misses
bunny after checking 70K intersections
Ray C intersects sphere and intersects
bunny

® (Can also use axis-aligned

bounding box
® FEasier to create for triangle mesh

Bounding Volume Hierarchy

Associate bounding volume with each node of scene graph

® [f ray misses a node’s bounding volume, then no need to

check any node beneath it
If ray hits a node’s BV, then replace it with its children’s
BV’s (or geometry)

Breadth first search of tree
® Maintain heap ordered by ray-BV intersection #-values

® Explore children of node
w/least pos. ray-BV z-value

IRNZEEN

ERSEEE

. . [INE*ENE

® Encase object in a 3-D grid of cubes Ey RN

o Rosterizeray tofnd whichoellsit [ES SRR

intersects L C T

® 3D Bresenham algorithm
® All cells that contain any part of ray

® Working from first ray-cell to last...

® Find least positive intersect of ray with triangles in
cell’s list

® [f no intersection, move on to next cell

Tagging

Ray-object intersection test

valid for ray with entire object

® not just portion of object
inside current cell

® Need only intersect object
once for each ray

Tags

® does not intersect

® intersection at ...

K-D trees

® Put bounding box around all objects
® split with coordinate plane (X, y, or z) into two boxes
® distribute objects into boxes
® split each child box recursively until stop

® (Questions:
® how do we compute intersections?
® casy
® pass ray into children it intersects
® intersect with objects in leaf nodes
® what is a good split?
® how should we stop splitting?

K-D trees - what 1s a good split?

® Keep track of intersection costs
® cheap to intersect with nearly empty boxes
® ecxpensive to intersect with a box with lots of stuff
® cxpensive to look at many small boxes

® (Cost of split=
® (ost of traversal+Cost Left Intersect +Cost Right Intersect
® Need a model for intersect costs

C F::ﬂﬂ __— splitting
Sun plane
M

K-D trees - what 1s

® Intersect cost model:

a good split?

® FEach box contains voxels on some fine grid

® Filled voxels might be convex

® [f they were, probability of intersection would be ratio of surface areas

Expected cost of ray entering box =

region X

: A
regionY __—
D 4« arbitrary

ray

S
“YBase cost of intersection

Oz

K-D trees - what 1s a good split?

® Expected cost of split =
® expected cost of LHS box+
® cxpected cost of RHS box+
® cost of traversal

® Notice expression does not depend on probability ray
visits parent

K-D trees

Splits occur only on planes that bound filled voxels
Search all splits for lowest cost, using model

Stopping
® fixed depth
threshold number of objects per voxel

both
adaptive (i.e. make cost estimate for each leaf, split of each leaf)

http://www.flipcode.com/archives/Raytracing Topics Techniques-Part 7 Kd-
Trees and More Speed.shtml

