
Curves
D.A. Forsyth, with slides from John Hart

Central issues in modelling

• Construct families of curves, surfaces and volumes that
• can represent common objects usefully;
• are easy to interact with; interaction includes:
• manual modelling;
• fitting to measurements;

• support geometric computations
• intersection
• collision

Main topics

• Simple curves
• Simple surfaces
• Continuity and splines
• Bezier surfaces and spline surfaces
• Volume models
• Meshes
• Animation

Parametric forms

• A parametric curve is
• a mapping of one parameter into
• 2D
• 3D

• Examples
• circle as (cos t, sin t)
• twisted cubic as (t, t*t, t*t*t)
• circle as (1-t^2, 2 t, 0)/(1+t^2)

• domain of the parametrization MATTERS
• (cos t, sin t), 0<=t<= pi is a semicircle

Curves - basic ideas

• Important cases on the plane
• Monge (or explicit)
• given as a function, y(x)
• Examples:
• many lines, bits of circle, sines, etc

• Implicit curve
• F(x, y)=0
• Examples:
• all lines, circles, ellipses
• any explicit curve; any parametric algebraic curve; lots of others
• Important special case: F polynomial

• Parametric curve
• (x(s), y(s)) for s in some range
• Examples
• all lines, circles, ellipses
• Important special cases: x, y polynomials, rational

Parametric forms

• A parametric surface is
• a mapping of two parameters into 3D
• Examples:
• sphere as (cos s cos t, sin s cos t, sin t)

• Again, domain matters

• Very common forms
• Curve

• Surface

• Functions phi are known as “blending functions”

x(s)=
�

i viφi(s)

x(s, t)=
�

ij vijφij(s, t)

Parametric vs Implicit

• Some computations are easier in one form
• Implicit
• ray tracing

• Parametric
• meshing

• Implicit surfaces bound volumes
• “hold water”
• but there might be extra bits

• Parametric surfaces/curves often admit implicit form
• Control
• implicit: fundamentally global, rigid objects
• parametric: can have local control

Interpolation

• Construct a parametric curve that passes through
(interpolates) a set of points.

• Lagrange interpolate:
• give parameter values associated with each point
• use Lagrange polynomials (one at the relevant point, zero at all others) to

construct curve
• curve is:

�
i∈points piφ

(l)
i (t)

Lagrange interpolate

• Construct a parametric curve that passes through
(interpolates) a set of points.

• Lagrange interpolate:
• give parameter values associated with each point
• use Lagrange polynomials (one at the relevant point, zero at all others) to

construct curve
• degree is (#pts-1)
• e.g. line through two points
• quadratic through three.

•

Lagrange polynomials

• Interpolate points at s=s_i, i=1..n
• Blending functions

• Can do this with a polynomial

φi(s) =
�

1 s = si

0 s = sk, k �= i

�
j=1..i−1,i..n(s− sj)�
j=1..i−1,i..n(sj − si)

Hermite interpolation

• Hermite interpolate
• give parameter values and derivatives associated with each point
• curve passes through given point and the given derivative at that parameter

value
• For two points (most important case) curve is:

• use Hermite polynomials to construct curve
• one at some parameter value and zero at others or
• derivative one at some parameter value, and zero at others

p0φ0(t) + p1φ1(t) + v0φ2(t) + v1φ3(t)

Hermite curves

• Natural matrix form:
• solve linear system to get curve coefficients

• Easily “pasted” together

Blending functions are cubic polynomials, so we write as:

This allows us to write the curve as:

Basis matrix Geometry matrix

p0φ0(t) + p1φ1(t) + v0φ2(t) + v1φ3(t)

�
φ0(t) φ1(t) φ2(t) φ3(t)

�
=

�
1 t t2 t3

�

a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3

�
1 t t2 t3

�

a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3

p0

p1

v0

v1

Hermite polynomials

�
φ0(t) φ1(t) φ2(t) φ3(t)

�
=

�
1 t t2 t3

�

a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3

d

dt

�
φ0(t) φ1(t) φ2(t) φ3(t)

�
=

�
0 1 2t 3t2

�

a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3

Constraints

These constraints give:

 Interpolate each endpoint
 Have correct derivatives at each endpoint

φ0(0) φ1(0) φ2(0) φ3(0)
φ0(1) φ1(1) φ2(1) φ3(1)
dφ0
dt (0) dφ1

dt (0) dφ2
dt (0) dφ3

dt (0)
dφ0
dt (1) dφ1

dt (1) dφ2
dt (1) dφ3

dt (1)

 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

We can write individual constraints like:

To get:

�
φ0(0) φ1(0) φ2(0) φ3(0)

�
=

�
1 0 02 03

�

a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3

1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3

a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3

=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Hermite blending functions

Bezier curves

Bezier curves

Bezier curves

Bezier curves as a tableau

de Casteljau (formal version)

Bezier curve blending functions

n�

i=0

biB
n
i (u)

Curve has the form:

Bezier blending functions

• Bezier-Bernstein polynomials
• here C(n, i) is the number of combinations of n items, taken i at a time
•

C(n, i) =
n!

(n− i)!i!

Bn
i (u) = C(n, i)(1− u)iun−1

Bezier curve properties

• Pass through first, last points
• Tangent to initial, final segments of control polygon
• Lie within convex hull of control polygon
• Subdivide

Bezier curve tricks - I

• Pull a curve
towards a point
by placing two
control points
on top of one
another

Bezier curve tricks - II

• Close a curve by
making endpoints
the same point
• clean join by making

segments line up

Subdivision for Bezier curves

• Use De Casteljau (repeated
linear interpolation) to
identify points.

• Points as marked in figure
give two control polygons,
for two Bezier curves,
which lie on top of the
original.

• Repeated subdivision leads
to a polygon that lies very
close to the curve

• Limit of subdivision
process is a curve

Degree raising for Bezier curves

• Idea: add a control point without changing curve
• Procedure:
• curve with k control points is p(t), k+1 is q(t)
• multiply p(t) by (1-t+t), line up monomials
• gives relation

p(t)=
�k

i=0 pi

�
k
i

�
(1− t)k−iti

q(t)=
�k+1

i=0 qi

�
k
i

�
(1− t)k+1−iti

(1-t+t) p(t)= q(t)

Degree raising for Bezier curves

�
k + 1

i

�
qi =

�
k
i

�
pi +

�
k

i− 1

�
pi−1

Equivalences

• 4 control point Bezier curve is a cubic curve
• so is an Hermite curve
• so we can transform from one to the other
• Easy way:
• notice that 4-point Bezier curve
• interpolates endpoints
• has tangents 3(b_1-b_0), 3(b_3-b_2)
• this gives Hermite->Bezier, Bezier->Hermite

• Hard way:
• do the linear algebra

4-point Bezier curve:

Hermite curve:

�
1 t t2 t3

�

1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1

p0

p1

p2

p3

�
1 t t2 t3

�

1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1

p0

p1

v0

v1

�
1 t t2 t3

�
BbGb

�
1 t t2 t3

�
BhGh

• Say we know G_b
• what G_h will give the same curve?

• known G_h works similarly

Converting

BhGh = BbGb

Gh = B−1
h BbGb

Continuity

• Geometric continuity
• G^0 - end points join up
• G^1 - end points join up, tangents are parallel

• Continuity
• function of parametrization as well as geometry

Achieving geometric continuity

• Bezier curves
• endpoints on top of each other
• end tangents parallel

• Hermite curves
• endpoints on top of each other
• end tangents parallel
• Catmull-Rom construction if we don’t have tangents

Catmull-Rom construction (partial)

Simple surface constructions

• Surfaces can be:
• explicit
• implicit
• parametric

Extruded surfaces

• Geometrical model -
Pasta machine

• Take curve and
“extrude” surface
along vector

• Many human
artifacts have this
form - rolled steel,
etc.

(x(s, t), y(s, t), z(s,t)) = (xc (s), yc (s), zc (s)) + t(v0 ,v1,v2)

Vector

Curve

t varies along line
s varies along curve

Cones

• From every point on
a curve, construct a
line segment
through a single
fixed point in space
- the vertex

• Curve can be space
or plane curve, but
shouldn’t pass
through the vertex

Vertex

Curve

t varies along line

s varies along curve

(x(s, t), y(s, t), z(s,t)) = (1− t)(xc (s), yc (s), zc (s))+ t(v0 ,v1 ,v2)

Surfaces of revolution

• Plane curve + axis
• “spin” plane curve

around axis to get
surface

• Choice of plane is
arbitrary, choice of
axis affects surface

• In this case, curve is on
x-z plane, axis is z
axis.

(x(s, t), y(s, t), z(s,t)) =

(xc (s) cos(t), xc (s)sin(t), zc (s))

SOR-2

• Many artifacts are
SOR’s, as they’re easy
to make on a lathe.

• Controlling is quite
easy - concentrate on
the cross section.

• Axis crossing cross-
section leads to ugly
geometry.

z

yx

t varies around circle

s varies up curve

Ruled surfaces

• Popular, because it’s easy to
build a curved surface out of
straight segments - eg
pavilions, etc.

• Take two space curves, and
join corresponding points -
same s - with line segment.

• Even if space curves are lines,
the surface is usually curved.

(x(s, t), y(s, t), z(s,t)) =
(1− t)(x1(s), y1 (s), z1(s))+

t(x2 (s),y2 (s), z2 (s))

c1(s)

c2(s)

s varies

t v
ar

ies

Normals

• Recall: normal is cross product of tangent in t direction
and s direction.

• Cylinder: normal is cross-product of curve tangent and
direction vector

• SOR: take curve normal and spin round axis

Rendering

• Cylinders: small steps along curve,
straight segments along t generate
polygons; exact normal is known.

Rendering

• Cone: small steps in s generate
straight edges, join with vertex to get
triangles, normals known exactly
except at vertex.

Rendering

• SOR: small steps in s generate strips,
small steps in t along the strip
generate edges; join up to form
triangles. Normals known exactly.

Rendering

• Ruled surface: steps in s generate
polygons, join opposite sides to
make triangles - otherwise “non
planar polygons” result. Normals
known exactly.

