Curves

D.A. Forsyth, with slides from John Hart

Central issues in modelling

- Construct families of curves, surfaces and volumes that
- can represent common objects usefully;
- are easy to interact with; interaction includes:
- manual modelling;
- fitting to measurements;
- support geometric computations
- intersection
- collision

Main topics

- Simple curves
- Simple surfaces
- Continuity and splines
- Bezier surfaces and spline surfaces
- Volume models
- Meshes
- Animation

Parametric forms

- A parametric curve is
- a mapping of one parameter into
- 2D
- 3D
- Examples
- circle as $\quad(\cos t, \sin t)$
- twisted cubic as ($\left.\mathrm{t}, \mathrm{t}^{*} \mathrm{t}, \mathrm{t}^{*} \mathrm{t}^{*} \mathrm{t}\right)$
- circle as

$$
\left(1-\mathrm{t}^{\wedge} 2,2 \mathrm{t}, 0\right) /\left(1+\mathrm{t}^{\wedge} 2\right)
$$

- domain of the parametrization MATTERS
- $(\cos \mathrm{t}, \sin \mathrm{t}), 0<=\mathrm{t}<=\mathrm{pi}$ is a semicircle

Curves - basic ideas

- Important cases on the plane
- Monge (or explicit)
- given as a function, $\mathrm{y}(\mathrm{x})$
- Examples:
- many lines, bits of circle, sines, etc
- Implicit curve
- $\mathrm{F}(\mathrm{x}, \mathrm{y})=0$
- Examples:
- all lines, circles, ellipses
- any explicit curve; any parametric algebraic curve; lots of others
- Important special case: F polynomial
- Parametric curve
- (x(s), y(s)) for s in some range
- Examples
- all lines, circles, ellipses
- Important special cases: x, y polynomials, rational

Parametric forms

- A parametric surface is
- a mapping of two parameters into 3D
- Examples:
- sphere as $(\cos s \cos t, \sin s \cos t, \sin t)$
- Again, domain matters
- Very common forms
- Curve

$$
\mathbf{x}(\mathrm{s})=\sum_{i} \mathbf{v}_{i} \phi_{i}(s)
$$

- Surface

$$
\mathbf{x}(\mathrm{s}, \mathrm{t})=\sum_{i j} \mathbf{v}_{i j} \phi_{i j}(s, t)
$$

Functions phi are known as "blending functions"

Parametric vs Implicit

- Some computations are easier in one form
- Implicit
- ray tracing
- Parametric
- meshing
- Implicit surfaces bound volumes
- "hold water"
- but there might be extra bits
- Parametric surfaces/curves often admit implicit form
- Control
- implicit: fundamentally global, rigid objects
- parametric: can have local control

Interpolation

- Construct a parametric curve that passes through (interpolates) a set of points.
- Lagrange interpolate:
- give parameter values associated with each point
- use Lagrange polynomials (one at the relevant point, zero at all others) to construct curve
- curve is:

$$
\sum_{i \in \operatorname{points}} \mathbf{p}_{i} \phi_{i}^{(l)}(t)
$$

Lagrange interpolate

- Construct a parametric curve that passes through (interpolates) a set of points.
- Lagrange interpolate:
- give parameter values associated with each point
- use Lagrange polynomials (one at the relevant point, zero at all others) to construct curve
- degree is (\#pts-1)
- e.g. line through two points
- quadratic through three.

Lagrange polynomials

- Interpolate points at $\mathrm{s}=\mathrm{s} _\mathrm{i}, \mathrm{i}=1$..n
- Blending functions

$$
\phi_{i}(s)= \begin{cases}1 & s=s_{i} \\ 0 & s=s_{k}, k \neq i\end{cases}
$$

- Can do this with a polynomial

$$
\frac{\prod_{j=1 . . i-1, i . n}\left(s-s_{j}\right)}{\prod_{j=1 . . i-1, i . . n}\left(s_{j}-s_{i}\right)}
$$

Fig 2.16a. Interpolation

Fig 2.16c. Interpolation by a polynomial of degree 14 .

Hermite interpolation

- Hermite interpolate
- give parameter values and derivatives associated with each point
- curve passes through given point and the given derivative at that parameter value
- For two points (most important case) curve is:

$$
\mathbf{p}_{0} \phi_{0}(t)+\mathbf{p}_{1} \phi_{1}(t)+\mathbf{v}_{0} \phi_{2}(t)+\mathbf{v}_{1} \phi_{3}(t)
$$

- use Hermite polynomials to construct curve
- one at some parameter value and zero at others or
- derivative one at some parameter value, and zero at others

Hermite curves

- Natural matrix form:
- solve linear system to get curve coefficients
- Easily "pasted" together

$$
\mathbf{p}_{0} \phi_{0}(t)+\mathbf{p}_{1} \phi_{1}(t)+\mathbf{v}_{0} \phi_{2}(t)+\mathbf{v}_{1} \phi_{3}(t)
$$

Blending functions are cubic polynomials, so we write as:

$$
\left[\begin{array}{llll}
\phi_{0}(t) & \phi_{1}(t) & \phi_{2}(t) & \phi_{3}(t)
\end{array}\right]=\left[\begin{array}{llll}
1 & t & t^{2} & t^{3}
\end{array}\right]\left\{\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & a_{3} \\
b_{0} & b_{1} & b_{2} & b_{3} \\
c_{0} & c_{1} & c_{2} & c_{3} \\
d_{0} & d_{1} & d_{2} & d_{3}
\end{array}\right\}
$$

This allows us to write the curve as:

$$
\left[\begin{array}{llll}
1 & t & t^{2} & t^{3}
\end{array}\right]\left\{\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & a_{3} \\
b_{0} & b_{1} & b_{2} & b_{3} \\
c_{0} & c_{1} & c_{2} & c_{3} \\
d_{0} & d_{1} & d_{2} & d_{3}
\end{array}\right\}\left\{\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{v}_{0} \\
\mathbf{v}_{1}
\end{array}\right\}
$$

Basis matrix
Geometry matrix

Hermite polynomials

$$
\begin{aligned}
& {\left[\begin{array}{llll}
\phi_{0}(t) & \phi_{1}(t) & \phi_{2}(t) & \phi_{3}(t)
\end{array}\right]=\left[\begin{array}{llll}
1 & t & t^{2} & t^{3}
\end{array}\right]\left\{\begin{array}{llll}
a_{0} & a_{1} & a_{2} & a_{3} \\
b_{0} & b_{1} & b_{2} & b_{3} \\
c_{0} & c_{1} & c_{2} & c_{3} \\
d_{0} & d_{1} & d_{2} & d_{3}
\end{array}\right\}} \\
& \frac{d}{d t}\left[\begin{array}{llll}
\phi_{0}(t) & \phi_{1}(t) & \phi_{2}(t) & \phi_{3}(t)
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 2 t & 3 t^{2}
\end{array}\right]\left\{\begin{array}{llll}
a_{0} & a_{1} & a_{2} & a_{3} \\
b_{0} & b_{1} & b_{2} & b_{3} \\
c_{0} & c_{1} & c_{2} & c_{3} \\
d_{0} & d_{1} & d_{2} & d_{3}
\end{array}\right\}
\end{aligned}
$$

Constraints

$$
\left[\begin{array}{cccc}
\phi_{0}(0) & \phi_{1}(0) & \phi_{2}(0) & \phi_{3}(0) \\
\phi_{0}(1) & \phi_{1}(1) & \phi_{2}(1) & \phi_{3}(1) \\
\frac{d \phi_{0}}{d t}(0) & \frac{d \phi_{1}}{d t}(0) & \frac{d \phi_{2}}{d t}(0) & \frac{d \phi_{3}}{d t}(0) \\
\frac{d \phi_{0}}{d t}(1) & \frac{d \phi_{1}}{d t}(1) & \frac{d \phi_{2}}{d t}(1) & \frac{d \phi_{3}}{d t}(1)
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

These constraints give:
Interpolate each endpoint
Have correct derivatives at each endpoint

We can write individual constraints like:

$$
\left[\begin{array}{llll}
\phi_{0}(0) & \phi_{1}(0) & \phi_{2}(0) & \phi_{3}(0)
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0^{2} & 0^{3}
\end{array}\right]\left\{\begin{array}{llll}
a_{0} & a_{1} & a_{2} & a_{3} \\
b_{0} & b_{1} & b_{2} & b_{3} \\
c_{0} & c_{1} & c_{2} & c_{3} \\
d_{0} & d_{1} & d_{2} & d_{3}
\end{array}\right\}
$$

To get:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 2 & 3
\end{array}\right]\left\{\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & a_{3} \\
b_{0} & b_{1} & b_{2} & b_{3} \\
c_{0} & c_{1} & c_{2} & c_{3} \\
d_{0} & d_{1} & d_{2} & d_{3}
\end{array}\right\}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Hermite blending functions

Hermite Blending Polynomials

$$
\begin{aligned}
& h_{1}(u)=2 u^{3}-3 u^{2}+1 \\
& h_{2}(u)=-2 u^{3}+3 u^{2} \\
& h_{3}(u)=u^{3}-2 u^{2}+u \\
& h_{4}(u)=u^{3}-u^{2}
\end{aligned}
$$

Bezier curves

Linear Interpolation

$$
\mathbf{b}(u)=(1-u) \mathbf{b}_{0}+(u) \mathbf{b}_{1} \quad \text { where } 0 \leq u \leq 1
$$

Bezier curves

"Doubled" Linear Interpolation

Bezier curves

"Tripled" Linear Interpolation

Get a cubic polynomial curve

$$
\begin{aligned}
\mathbf{b}_{0}^{3}(u)= & (1-u)^{3} \mathbf{b}_{0} \\
& +3(1-u)^{2}(u) \mathbf{b}_{1} \\
& +3(1-u)(u)^{2} \mathbf{b}_{2} \\
& +(u)^{3} \mathbf{b}_{3}
\end{aligned}
$$

This is a cubic Bézier curve

Bezier curves as a tableau

"Tripled" Linear Interpolation

Repeated averaging in tableau form:

$\overbrace{\mathbf{b}_{0}}^{\text {Input points }}$			
\mathbf{b}_{1}	\mathbf{b}_{0}^{1}		
\mathbf{b}_{2}	\mathbf{b}_{1}^{1}	\mathbf{b}_{0}^{2}	
\mathbf{b}_{3}	\mathbf{b}_{2}^{1}	\mathbf{b}_{1}^{2}	$\underbrace{\mathbf{b}_{0}^{3}}_{\text {Point on curve }}$

This clearly suggests a recursive procedure ...

de Casteljau (formal version)

General Bézier Curves

Given $n+1$ control points

$$
\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{n} \in R^{3}
$$

We can define a Bézier curve

$$
\mathbf{b}(u)=\mathbf{b}^{n}(u)=\mathbf{b}_{0}^{n}(u)
$$

via the recursive construction

$$
\begin{aligned}
& \mathbf{b}_{i}^{r}(u)=(1-u) \mathbf{b}_{i}^{r-1}(u)+(u) \mathbf{b}_{i+1}^{r-1}(u) \\
& \mathbf{b}_{i}^{0}(u)=\mathbf{b}_{i}
\end{aligned}
$$

This is the de Casteljau Algorithm

Bezier curve blending functions

Common Bernstein Polynomials

$$
\begin{array}{llll}
& B_{0}^{3}=(1-u)^{3} & \text { Curve has the form: } \\
B_{0}^{1}=1-u & B_{1}^{3}=(1-u)^{2} & B_{1}^{2}=2(1-u)^{2}(u) & \\
B_{1}^{1}=u & B_{2}^{2}=u^{2} & B_{3}^{3}=u^{3}
\end{array}
$$

Bezier blending functions

- Bezier-Bernstein polynomials

$$
B_{i}^{n}(u)=C(n, i)(1-u)^{i} u^{n-1}
$$

- here $C(n, i)$ is the number of combinations of n items, taken i at a time

$$
C(n, i)=\frac{n!}{(n-i)!i!}
$$

Bezier curve properties

- Pass through first, last points
- Tangent to initial, final segments of control polygon
- Lie within convex hull of control polygon
- Subdivide

Bezier curve tricks - I

- Pull a curve towards a point by placing two control points on top of one another

Bezier curve tricks - II

- Close a curve by making endpoints the same point
- clean join by making segments line up

Subdivision for Bezier curves

- Use De Casteljau (repeate linear interpolation) to identify points.
- Points as marked in figure give two control polygons for two Bezier curves, which lie on top of the original.
- Repeated subdivision lead to a polygon that lies very close to the curve
- Limit of subdivision process is a curve

Fig. 4.5. Decomposition of a Bézier curve into two C^{3} continuous curve segments (cf. Fig. 4.4).

Degree raising for Bezier curves

- Idea: add a control point without changing curve
- Procedure:
- curve with k control points is $p(t), k+1$ is $q(t)$
- multiply $\mathrm{p}(\mathrm{t})$ by (1-t+t), line up monomials
- gives relation

$$
\begin{gathered}
\mathbf{p}(\mathrm{t})=\sum_{i=0}^{k} \mathbf{p}_{i}\binom{k}{i}(1-t)^{k-i} t^{i} \quad(1-\mathrm{t}+\mathrm{t}) \mathbf{p}(\mathrm{t})=\mathbf{q}(\mathrm{t}) \\
\mathbf{q}(\mathrm{t})=\sum_{i=0}^{k+1} \mathbf{q}_{i}\binom{k}{i}(1-t)^{k+1-i} t^{i}
\end{gathered}
$$

Degree raising for Bezier curves

$$
\binom{k+1}{i} \mathbf{q}_{i}=\binom{k}{i} \mathbf{p}_{i}+\binom{k}{i-1} \mathbf{p}_{i-1}
$$

Equivalences

- 4 control point Bezier curve is a cubic curve
- so is an Hermite curve
- so we can transform from one to the other
- Easy way:
- notice that 4-point Bezier curve
- interpolates endpoints
- has tangents 3(b_1-b_0), 3(b_3-b_2)
- this gives Hermite->Bezier, Bezier->Hermite
- Hard way:
- do the linear algebra

4-point Bezier curve:

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & t & t^{2} & t^{3}
\end{array}\right]\left\{\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-3 & 3 & 0 & 0 \\
3 & -6 & 3 & 0 \\
-1 & 3 & -3 & 1
\end{array}\right\}\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]} \\
{\left[\begin{array}{llll}
1 & t & t^{2} & t^{3}
\end{array}\right] \mathcal{B}_{b} \mathcal{G}_{b}}
\end{gathered}
$$

Hermite curve:

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & t & t^{2} & t^{3}
\end{array}\right]\left\{\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-3 & 3 & -2 & -1 \\
2 & -2 & 1 & 1
\end{array}\right\}\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{v}_{0} \\
\mathbf{v}_{1}
\end{array}\right]} \\
{\left[\begin{array}{llll}
1 & t & t^{2} & t^{3}
\end{array}\right] \mathcal{B}_{h} \mathcal{G}_{h}}
\end{gathered}
$$

Converting

- Say we know G_b
- what G_h will give the same curve?

$$
\begin{gathered}
\mathcal{B}_{h} \mathcal{G}_{h}=\mathcal{B}_{b} \mathcal{G}_{b} \\
\mathcal{G}_{h}=\mathcal{B}_{h}^{-1} \mathcal{B}_{b} \mathcal{G}_{b}
\end{gathered}
$$

- known G_h works similarly

Continuity

- Geometric continuity
- $G^{\wedge} 0$ - end points join up
- $\mathrm{G}^{\wedge} 1$ - end points join up, tangents are parallel
- Continuity
- function of parametrization as well as geometry

Achieving geometric continuity

- Bezier curves
- endpoints on top of each other
- end tangents parallel
- Hermite curves
- endpoints on top of each other
- end tangents parallel
- Catmull-Rom construction if we don't have tangents

Catmull-Rom construction (partial)

$$
\mathbf{p}_{0}, \ldots, \mathbf{p}_{n} \quad \text { define tangent } \mathbf{r}_{i}=s\left(\mathbf{p}_{i+1}-\mathbf{p}_{i-1}\right)
$$

Simple surface constructions

- Surfaces can be:
- explicit
- implicit
- parametric

Extruded surfaces

- Geometrical model Pasta machine
- Take curve and "extrude" surface along vector
- Many human artifacts have this form - rolled steel, etc.

Cones

- From every point on a curve, construct a line segment through a single fixed point in space - the vertex
- Curve can be space or plane curve, but shouldn't pass through the vertex
$(x(s, t), y(s, t), z(s, t))=(1-t)\left(x_{c}(s), y_{c}(s), z_{c}(s)\right)+t\left(v_{0}, v_{1}, v_{2}\right)$

Surfaces of revolution

- Plane curve + axis
- "spin" plane curve around axis to get surface
- Choice of plane is arbitrary, choice of axis affects surface
- In this case, curve is on x - z plane, axis is z axis.

SOR-2

- Many artifacts are SOR's, as they're easy to make on a lathe.
- Controlling is quite easy - concentrate on the cross section.
- Axis crossing crosssection leads to ugly geometry.

Ruled surfaces

- Popular, because it's easy to build a curved surface out of straight segments - eg pavilions, etc.
- Take two space curves, and join corresponding points -

$$
\begin{aligned}
& (x(s, t), y(s, t), z(s, t))= \\
& (1-t)\left(x_{1}(s), y_{1}(s), z_{1}(s)\right)+ \\
& t\left(x_{2}(s), y_{2}(s), z_{2}(s)\right)
\end{aligned}
$$

- Even if space curves are lines, the surface is usually curved.

Normals

- Recall: normal is cross product of tangent in t direction and s direction.
- Cylinder: normal is cross-product of curve tangent and direction vector
- SOR: take curve normal and spin round axis

Rendering

- Cylinders: small steps along curve, straight segments along t generate polygons; exact normal is known.

Rendering

- Cone: small steps in s generate straight edges, join with vertex to get triangles, normals known exactly except at vertex.

Rendering

- SOR: small steps in s generate strips, small steps in t along the strip generate edges; join up to form triangles. Normals known exactly.

Rendering

- Ruled surface: steps in s generate polygons, join opposite sides to make triangles - otherwise "non planar polygons" result. Normals known exactly.

