
Curves
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Central issues in modelling

• Construct families of curves, surfaces and volumes that
• can represent common objects usefully;
• are easy to interact with; interaction includes:
• manual modelling;
• fitting to measurements;

• support geometric computations
• intersection
• collision



Main topics

• Simple curves
• Simple surfaces
• Continuity and splines
• Bezier surfaces and spline surfaces
• Volume models
• Meshes
• Animation



Parametric forms

• A parametric curve is 
• a mapping of one parameter into 
• 2D
• 3D

• Examples
• circle as                    (cos t, sin t)
• twisted cubic as       (t, t*t, t*t*t)
• circle as                   (1-t^2, 2 t, 0)/(1+t^2)

• domain of the parametrization MATTERS
• (cos t, sin t),  0<=t<= pi    is a semicircle



Curves - basic ideas

• Important cases on the plane
• Monge (or explicit)    
• given as a function, y(x)
• Examples:  
• many lines, bits of circle, sines, etc

• Implicit curve
• F(x, y)=0
• Examples:
• all lines, circles, ellipses
• any explicit curve; any parametric algebraic curve; lots of others
• Important special case:  F polynomial

• Parametric curve
• (x(s), y(s))    for s in some range
• Examples
• all lines, circles, ellipses
• Important special cases:  x, y polynomials, rational



Parametric forms

• A parametric surface is 
• a mapping of two parameters into 3D
• Examples:
• sphere as                                 (cos s cos t, sin s cos t, sin t)

• Again, domain matters

• Very common forms
• Curve

• Surface

• Functions phi are known as “blending functions”

x(s)=
�

i viφi(s)

x(s, t)=
�

ij vijφij(s, t)



Parametric vs Implicit

• Some computations are easier in one form
• Implicit
• ray tracing

• Parametric
• meshing

• Implicit surfaces bound volumes
• “hold water”
• but there might be extra bits

• Parametric surfaces/curves often admit implicit form
• Control
• implicit:  fundamentally global, rigid objects
• parametric: can have local control



Interpolation

• Construct a parametric curve that passes through 
(interpolates) a set of points.

• Lagrange interpolate:
• give parameter values associated with each point
• use Lagrange polynomials  (one at the relevant point, zero at all others) to 

construct curve
• curve is:

�
i∈points piφ

(l)
i (t)



Lagrange interpolate

• Construct a parametric curve that passes through 
(interpolates) a set of points.

• Lagrange interpolate:
• give parameter values associated with each point
• use Lagrange polynomials  (one at the relevant point, zero at all others) to 

construct curve
• degree is (#pts-1)
• e.g. line through two points
• quadratic through three.

•



Lagrange polynomials

• Interpolate points at s=s_i, i=1..n
• Blending functions

• Can do this with a polynomial

φi(s) =
�

1 s = si

0 s = sk, k �= i

�
j=1..i−1,i..n(s− sj)�
j=1..i−1,i..n(sj − si)





Hermite interpolation

• Hermite interpolate
• give parameter values and derivatives associated with each point
• curve passes through given point and the given derivative at that parameter 

value
• For two points (most important case) curve is:

• use Hermite polynomials to construct curve
• one at some parameter value and zero at others or
• derivative one at some parameter value, and zero at others

p0φ0(t) + p1φ1(t) + v0φ2(t) + v1φ3(t)



Hermite curves

• Natural matrix form:
• solve linear system to get curve coefficients

• Easily “pasted” together



Blending functions are cubic polynomials, so we write as:

This allows us to write the curve as:

Basis matrix Geometry matrix

p0φ0(t) + p1φ1(t) + v0φ2(t) + v1φ3(t)

�
φ0(t) φ1(t) φ2(t) φ3(t)

�
=

�
1 t t2 t3

�






a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3






�
1 t t2 t3

�






a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3











p0

p1

v0

v1








Hermite polynomials

�
φ0(t) φ1(t) φ2(t) φ3(t)

�
=

�
1 t t2 t3

�






a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3






d

dt

�
φ0(t) φ1(t) φ2(t) φ3(t)

�
=

�
0 1 2t 3t2

�






a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3








Constraints

These constraints give:

                 Interpolate each endpoint
                                          Have correct derivatives at each endpoint





φ0(0) φ1(0) φ2(0) φ3(0)
φ0(1) φ1(1) φ2(1) φ3(1)
dφ0
dt (0) dφ1

dt (0) dφ2
dt (0) dφ3

dt (0)
dφ0
dt (1) dφ1

dt (1) dφ2
dt (1) dφ3

dt (1)



 =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







We can write individual constraints like:

To get:

�
φ0(0) φ1(0) φ2(0) φ3(0)

�
=

�
1 0 02 03

�






a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3










1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3










a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3





=





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







Hermite blending functions



Bezier curves



Bezier curves



Bezier curves



Bezier curves as a tableau



de Casteljau (formal version)



Bezier curve blending functions

n�

i=0

biB
n
i (u)

Curve has the form:



Bezier blending functions

• Bezier-Bernstein polynomials
• here C(n, i) is the number of combinations of n items, taken i at a time
•

C(n, i) =
n!

(n− i)!i!

Bn
i (u) = C(n, i)(1− u)iun−1



Bezier curve properties

• Pass through first, last points
• Tangent to initial, final segments of control polygon
• Lie within convex hull of control polygon
• Subdivide



Bezier curve tricks - I

• Pull a curve 
towards a point 
by placing two 
control points 
on top of one 
another



Bezier curve tricks - II

• Close a curve by 
making endpoints 
the same point
• clean join by making 

segments line up



Subdivision for Bezier curves

• Use De Casteljau (repeated 
linear interpolation) to 
identify points.

• Points as marked in figure 
give two control polygons, 
for two Bezier curves, 
which lie on top of the 
original.

• Repeated subdivision leads 
to a polygon that lies very 
close to the curve

• Limit of subdivision 
process is a curve



Degree raising for Bezier curves

• Idea: add a control  point without changing curve
• Procedure:
• curve with k control points is p(t), k+1 is q(t)
• multiply p(t) by (1-t+t), line up monomials
• gives relation

p(t)=
�k

i=0 pi

�
k
i

�
(1− t)k−iti

q(t)=
�k+1

i=0 qi

�
k
i

�
(1− t)k+1−iti

(1-t+t) p(t)= q(t)



Degree raising for Bezier curves

�
k + 1

i

�
qi =

�
k
i

�
pi +

�
k

i− 1

�
pi−1



Equivalences

• 4 control point Bezier curve is a cubic curve
• so is an Hermite curve
• so we can transform from one to the other
• Easy way:
• notice that 4-point Bezier curve
• interpolates endpoints
• has tangents 3(b_1-b_0),  3(b_3-b_2)
• this gives Hermite->Bezier, Bezier->Hermite

• Hard way:
• do the linear algebra



4-point Bezier curve:

Hermite curve:

�
1 t t2 t3

�






1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1










p0

p1

p2

p3





�
1 t t2 t3

�






1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1










p0

p1

v0

v1





�
1 t t2 t3

�
BbGb

�
1 t t2 t3

�
BhGh



• Say we know G_b 
• what G_h will give the same curve?

• known G_h works similarly

Converting 

BhGh = BbGb

Gh = B−1
h BbGb



Continuity

• Geometric continuity
• G^0   - end points join up
• G^1   - end points join up,  tangents are parallel

• Continuity
• function of parametrization as well as geometry



Achieving geometric continuity

• Bezier curves
• endpoints on top of each other
• end tangents parallel

• Hermite curves
• endpoints on top of each other
• end tangents parallel
• Catmull-Rom construction if we don’t have tangents



Catmull-Rom construction (partial)



Simple surface constructions

• Surfaces can be:
• explicit
• implicit
• parametric



Extruded surfaces

• Geometrical model - 
Pasta machine

• Take curve and 
“extrude” surface 
along vector

• Many human 
artifacts have this 
form - rolled steel, 
etc.

(x(s, t), y(s, t), z(s,t)) = (xc (s), yc (s), zc (s)) + t(v0 ,v1,v2 )

Vector

Curve

t varies along line
s varies along curve



Cones

• From every point on 
a curve, construct a 
line segment 
through a single 
fixed point in space 
- the vertex

• Curve can be space 
or plane curve, but 
shouldn’t pass 
through the vertex

Vertex

Curve

t varies along line

s varies along curve

(x(s, t), y(s, t), z(s,t)) = (1− t)(xc (s), yc (s), zc (s))+ t(v0 ,v1 ,v2 )



Surfaces of revolution

• Plane curve + axis
• “spin” plane curve 

around axis to get 
surface

• Choice of plane is 
arbitrary, choice of 
axis affects surface

• In this case, curve is on    
x-z plane, axis is z 
axis.

(x(s, t), y(s, t), z(s,t)) =

(xc (s) cos(t), xc (s)sin(t), zc (s))



SOR-2

• Many artifacts are 
SOR’s, as they’re easy 
to make on a lathe.

• Controlling is quite 
easy - concentrate on 
the cross section.

• Axis crossing cross-
section leads to ugly 
geometry.

z

yx

t varies around circle

s varies up curve



Ruled surfaces

• Popular, because it’s easy to 
build a curved surface out of 
straight segments - eg 
pavilions, etc.

• Take two space curves, and 
join corresponding points - 
same s - with line segment.

• Even if space curves are lines, 
the surface is usually curved.

(x(s, t), y(s, t), z(s,t)) =
(1− t)(x1(s), y1 (s), z1(s))+

t(x2 (s),y2 (s), z2 (s))



c1(s)

c2(s)

s varies

t v
ar

ies



Normals

• Recall:  normal is cross product of tangent in t direction 
and s direction.

• Cylinder: normal is cross-product of curve tangent and 
direction vector

• SOR: take curve normal and spin round axis



Rendering

• Cylinders: small steps along curve, 
straight segments along t generate 
polygons; exact normal is known.



Rendering

• Cone: small steps in s generate 
straight edges, join with vertex to get 
triangles, normals known exactly 
except at vertex.



Rendering

• SOR: small steps in s generate strips, 
small steps in t along the strip 
generate edges; join up to form 
triangles.  Normals known exactly.



Rendering

• Ruled surface: steps in s generate 
polygons, join opposite sides to 
make triangles - otherwise “non 
planar polygons” result. Normals 
known exactly.


