Curves

D.A. Forsyth, with slides from John Hart

Central 1ssues in modelling

e Construct families of curves, surfaces and volumes that
® can represent common objects usefully;
® are easy to interact with; interaction includes:
* manual modelling;
¢ fitting to measurements;
® support geometric computations
* intersection
* collision

Main topics

Simple curves

Simple surfaces

Continuity and splines

Bezier surfaces and spline surfaces
Volume models

Meshes

Animation

Parametric forms

® A parametric curve is
® a mapping of one parameter into

e 2D
e 3D
e Examples
® circle as (cost, sin t)
e twisted cubic as (t, t*t, t*t*t)
® circle as (1-tA2, 2 t, 0)/(1+tA2)

® domain of the parametrization MATTERS
® (cost,sint), O<=t<=pi isa semicircle

Curves - basic i1deas

e Important cases on the plane
® Monge (or explicit)
® given as a function, y(x)
e Examples:
® many lines, bits of circle, sines, etc
e Implicit curve
e F(x,y)=0
e Examples:
e all lines, circles, ellipses
® any explicit curve; any parametric algebraic curve; lots of others
e Important special case: F polynomial
® Parametric curve
® (x(s),y(s)) forsinsome range
e Examples
e all lines, circles, ellipses
¢ Important special cases: X,y polynomials, rational

Parametric forms

e A parametric surface is

® a mapping of two parameters into 3D
e Examples:

® sphere as (cos s cost, sin s cost, sin t)
® Again, domain matters

¢ Very common forms

o Curve X(S):Zi Vz'qbi(s)

e Surface
X(8, t)=)_;; VijPij (s, t)

Functions phi are known as “blending functions”

Parametric vs Implicit

Some computations are easier in one form
¢ Implicit
® ray tracing
® Parametric
® meshing
Implicit surfaces bound volumes
® ‘“hold water”
® but there might be extra bits

Parametric surfaces/curves often admit implicit form

Control
¢ implicit: fundamentally global, rigid objects
e parametric: can have local control

Interpolation

e Construct a parametric curve that passes through
(interpolates) a set of points.

e [agrange interpolate:

e give parameter values associated with each point

e use Lagrange polynomials (one at the relevant point, zero at all others) to
construct curve

® curve is:

l
Ziepoints Pi¢§)(t)

Lagrange interpolate

Construct a parametric curve that passes through
(interpolates) a set of points.

Lagrange interpolate:
e give parameter values associated with each point

e use Lagrange polynomials (one at the relevant point, zero at all others) to
construct curve

e degree is (#pts-1)
® c¢.g. line through two points
® quadratic through three.

Lagrange polynomials

e [nterpolate points at s=s_i, 1=1..n

¢ Blending functions
1 s= S;

gbi(s):{ 0 s=si,k#1

e (Can do this with a polynomial

Hj:l..i—l,’i..n(s - $5)
Hj:l..z'—l,i..n(sj — 5i)

Fig 2.16a. Interpolation
by a polynomial of degree 4. |

Fig 2.16c. Interpolation
by a polynomial of degree 14.

Hermite interpolation

e Hermite interpolate

® give parameter values and derivatives associated with each point

e curve passes through given point and the given derivative at that parameter
value

e For two points (most important case) curve is:

Po®o(t) + P1P1(t) + vopa(t) + vigs(t)

e use Hermite polynomials to construct curve
® one at some parameter value and zero at others or
® derivative one at some parameter value, and zero at others

Hermite curves

e Natural matrix form:
® solve linear system to get curve coefficients

e FEasily “pasted” together

Po®o(t) + P1¢1(t) + vooa(t) + vips(t)

Blending functions are cubic polynomials, so we write as:

f ap ai as
[¢0(t) le(t) ¢2<t) gb3(t) } — [1 + 2 43 }) bo b1 bo
Chb C1 C2
L do di do
This allows us to write the curve as:
(\ y i
ap a1 az as Py
[1 t t2 t3] < bO bl bQ b3 » Py >
Ch C1 C2 C3 Vo
(| do d1 d2 d3) | V1)

Basis matrix -
asis mat Geometry matrix

Hermite polynomials

Cdo(t) du(t) d2(t) @3(t) =1 t 7 7]

Sl oo) @) oa(t) 6s(0)] =[0 1 2 32]

$1(0) ¢2(0) @3(0)]
d1(1) 2(1) ¢3(1)
j;%m) ;i%(m %(c»
A ONE AORE O8N

Constraints

These constraints give:

Interpolate each endpoint

Have correct derivatives at each endpoint

o OO =

S O = O

S = O O

_— O O O

We can write individual constraints like:

[¢0(0) ¢1(0) ¢2(0) #3(0)]=[1 0 02 0%]34

OO = =

To get:
00 0] (a a1 as as) I
D R O
1 0 O Co C1 C2 C3 N
1 2 3|\ do div do ds) |

o OO =

S o= O

SO = O O

_— O O O

Hermite blending functions

Hermite Blending Polynomials

h (1) =2u’ —3u’* +1
h,(u)=-2u" +3u’
h,(W)=u"-2u" +u

h,(u) =1’ -’

Bezier curves

Linear Interpolation

bl

b(w) = (1-w)b, + (Wb,

where 0 <u<1

Bezier curves

“Doubled” Linear Interpolation

b! (u) = (1-w)b, + (Wb, b (1) =(1-u)b, +(u)b,

b2(u)=(1-u)b' +(w)b'
b, =(1-u)’b, +2u(l-u)b, + u’b,

Bezier curves

“Tripled” Linear Interpolation

b,

Get a cubic polynomial curve

bl (u)= (1-u)'b,
+3(1-u)*(u)b,
+3(1-u)(u)’b,
+(u)’b,

This is a cubic Bézier curve

Bezier curves as a tableau

“Tripled” Linear Interpolation

Repeated averaging in tableau form:

Input points

b,

b, b

b, bl b

b, bl b b

Paint on curve

This clearly suggests a recursive procedure ...

de Casteljau (formal version)

General Bezier Curves

Given n+1 control points
b,,b,,....b_eR’
We can define a Bézier curve
b(u)=b"(u) =by (u)
via the recursive construction
b (1) =(1-u)b]™" (1) + ()b (u)
b () =D,
This is the de Casteljau Algorithm

Common Bernstein Polynomials

Bezier curve blending functions

o8

L1

(1]

T

1 _ 2 _
B,=1-u B =2(1-u)(u)
1 2 2
B =u B, =u
Ii\
-n.ué \.\.
ﬂﬁ: L
. | “
=, o | 3
| .
o ‘1-2; . ____'\._H_
.-.D.'.- ..-..0..6.- a 10:111 e | G-] 'IUI-'I 5 e ——

BS =(1-u)

B; =(1-uw)’
B} =3(1-u)*(u)
B; =3(1—u)(u)*

3 3
B =u
1)
[
I
L. N
|
uej
i \\ ——
D.‘-: 5
\ _.
ozl o,
B2 04 06 08

Curve has the form:

Bezier blending functions

. . . n _ 3 1, n—1
e Bezier-Bernstein polynomials Bj'(u) = C(n,i)(1 —u)'u
® here C(n, 1) is the number of combinations of n items, taken 1 at a time
[]

Bezier curve properties

Pass through first, last points
Tangent to initial, final segments of control polygon
Lie within convex hull of control polygon

Subdivide

Bezier curve tricks - 1

e Pull a curve
towards a point
by placing two
control points
on top of one
another

Bezier curve tricks - 11

e (Close a curve by
making endpoints

the same point
® clean join by making
segments line up

P, Po= Ps

Subdivision for Bezier curves

b12 b2
Use De Casteljau (repeate by bo12 = 2
linear interpolation) to
identify points.

Points as marked in figure
give two control polygons
for two Bezier curves,
which lie on top of the
original.

Repeated subdivision lead
to a polygon that lies very
close to the curve

Limit of subdivision
process is a curve

D123

b23

b3

bo

Fig. 4.5. Decomposition of a Bézier curve into two
C? continuous curve segments (cf. Fig. 4.4).

Degree raising for Bezier curves

e [dea: add a control point without changing curve

e Procedure:

e curve with k control points is p(t), k+1 is q(t)

e multiply p(t) by (1-t+t), line up monomials
® gives relation

k

Degree raising for Bezier curves

E1N o (Y o F).
i q; — i | 82 i — 1 Pi—1

Equivalences

4 control point Bezier curve is a cubic curve
so 1s an Hermite curve
so we can transform from one to the other
Easy way:
® notice that 4-point Bezier curve

® interpolates endpoints

® has tangents 3(b_1-b_0), 3(b_3-b_2)
e this gives Hermite->Bezier, Bezier->Hermite

Hard way:

® do the linear algebra

4-point Bezier curve:

(1 0 0 0
3 3 0 0

2 43
L A A
13 3 1

(1t & 3] BG

Hermite curve:

(1 0 0 0
O 0 1 0

2 43
[1ttt]<_33_2_1
2 -2 1 1

Po
P1
P2
P3

Po
| 851

Vi

e Say we know G_b

Converting

e what G_h will give the same curve?

Bhgh — Bbgb
Gn = B, 'ByGy

e known G_h works similarly

Continuity

¢ Geometric continuity

e GAO - end points join up

e GA*l - end points join up, tangents are parallel
e Continuity

¢ function of parametrization as well as geometry

Achieving geometric continuity

e Bezier curves
¢ endpoints on top of each other
¢ end tangents parallel

e Hermite curves

¢ endpoints on top of each other
¢ end tangents parallel
e (Catmull-Rom construction if we don’t have tangents

Catmull-Rom construction (partial)

Po:---:Pn define 1angent I; =5[1}a‘+1 _Pf—l)

Simple surface constructions

e Surfaces can be:
e explicit
® implicit
® parametric

Extruded surfaces

e Geometrical model -
Pasta machine

e Take curve and
“extrude’ surface
along vector

e Many human
artifacts have this
form - rolled steel,
etc.

\Vector

(x(s,2), y(5,1),2(5,1)) = (x,.(5), ¥ (5),2.(5)) +1(vy,V;,V,)

e From every point on
a curve, construct a
line segment
through a single
fixed point in space
- the vertex

e Curve can be space
or plane curve, but
shouldn’t pass
through the vertex

Cones

(x(s,1), y(5,0),2(5,1)) = (1= 1)(x (), ¥, (5),2,()) + 1(v(,V;,V,)

Surfaces of revolution

Plane curve + axis
“spin” plane curve
around axis to get
surface

Choice of plane is
arbitrary, choice of
axis affects surface

In this case, curve is on
x-z plane, axis is z
axis.

(x(8,2), y(8,1),2(5,1)) =

(x,(s)cos(t),x,(s)sin(?),z.(s))

e Many artifacts are
SOR’s, as they’re easy
to make on a lathe.

e Controlling is quite
easy - concentrate on
the cross section.

® AXIS Crossing Cross-
section leads to ugly
geometry.

SOR-2

t varies around circle

S varies up curve

Ruled surfaces

e Popular, because it’s easy to
build a curved surface out of
straight segments - eg

pavilions, etc. (x(s,1), ¥(s,1),2(5,1)) =
e Take two space curves, and (1= 1)(x,(5),y, (), 7,(s)) +
join corresponding points - 1(x,(8), 7, (8),2, (5))

same s - with line segment.
e Even if space curves are lines,
the surface is usually curved.

c1(s)

Normals

Recall: normal is cross product of tangent in t direction
and s direction.

Cylinder: normal is cross-product of curve tangent and
direction vector

SOR: take curve normal and spin round axis

Rendering

Cylinders: small steps along curve,
straight segments along t generate
polygons; exact normal is known.

Rendering

Cone: small steps in s generate
straight edges, join with vertex to get
triangles, normals known exactly
except at vertex.

Rendering

SOR: small steps in s generate strips,
small steps in t along the strip
generate edges; join up to form
triangles. Normals known exactly.

Rendering

Ruled surface: steps in s generate
polygons, join opposite sides to
make triangles - otherwise “non
planar polygons” result. Normals
known exactly.

