
Curves
D.A. Forsyth, with slides from John Hart



Central issues in modelling

• Construct families of curves, surfaces and volumes that
• can represent common objects usefully;
• are easy to interact with; interaction includes:
• manual modelling;
• fitting to measurements;

• support geometric computations
• intersection
• collision



Main topics

• Simple curves
• Simple surfaces
• Continuity and splines
• Bezier surfaces and spline surfaces
• Volume models
• Meshes
• Animation



Parametric forms

• A parametric curve is 
• a mapping of one parameter into 
• 2D
• 3D

• Examples
• circle as                    (cos t, sin t)
• twisted cubic as       (t, t*t, t*t*t)
• circle as                   (1-t^2, 2 t, 0)/(1+t^2)

• domain of the parametrization MATTERS
• (cos t, sin t),  0<=t<= pi    is a semicircle



Curves - basic ideas

• Important cases on the plane
• Monge (or explicit)    
• given as a function, y(x)
• Examples:  
• many lines, bits of circle, sines, etc

• Implicit curve
• F(x, y)=0
• Examples:
• all lines, circles, ellipses
• any explicit curve; any parametric algebraic curve; lots of others
• Important special case:  F polynomial

• Parametric curve
• (x(s), y(s))    for s in some range
• Examples
• all lines, circles, ellipses
• Important special cases:  x, y polynomials, rational



Parametric forms

• A parametric surface is 
• a mapping of two parameters into 3D
• Examples:
• sphere as                                 (cos s cos t, sin s cos t, sin t)

• Again, domain matters

• Very common forms
• Curve

• Surface

• Functions phi are known as “blending functions”

x(s)=
�

i viφi(s)

x(s, t)=
�

ij vijφij(s, t)



Parametric vs Implicit

• Some computations are easier in one form
• Implicit
• ray tracing

• Parametric
• meshing

• Implicit surfaces bound volumes
• “hold water”
• but there might be extra bits

• Parametric surfaces/curves often admit implicit form
• Control
• implicit:  fundamentally global, rigid objects
• parametric: can have local control



Interpolation

• Construct a parametric curve that passes through 
(interpolates) a set of points.

• Lagrange interpolate:
• give parameter values associated with each point
• use Lagrange polynomials  (one at the relevant point, zero at all others) to 

construct curve
• curve is:

�
i∈points piφ

(l)
i (t)



Lagrange interpolate

• Construct a parametric curve that passes through 
(interpolates) a set of points.

• Lagrange interpolate:
• give parameter values associated with each point
• use Lagrange polynomials  (one at the relevant point, zero at all others) to 

construct curve
• degree is (#pts-1)
• e.g. line through two points
• quadratic through three.

•



Lagrange polynomials

• Interpolate points at s=s_i, i=1..n
• Blending functions

• Can do this with a polynomial

φi(s) =
�

1 s = si

0 s = sk, k �= i

�
j=1..i−1,i..n(s− sj)�
j=1..i−1,i..n(sj − si)





Hermite interpolation

• Hermite interpolate
• give parameter values and derivatives associated with each point
• curve passes through given point and the given derivative at that parameter 

value
• For two points (most important case) curve is:

• use Hermite polynomials to construct curve
• one at some parameter value and zero at others or
• derivative one at some parameter value, and zero at others

p0φ0(t) + p1φ1(t) + v0φ2(t) + v1φ3(t)



Hermite curves

• Natural matrix form:
• solve linear system to get curve coefficients

• Easily “pasted” together



Blending functions are cubic polynomials, so we write as:

This allows us to write the curve as:

Basis matrix Geometry matrix

p0φ0(t) + p1φ1(t) + v0φ2(t) + v1φ3(t)

�
φ0(t) φ1(t) φ2(t) φ3(t)

�
=

�
1 t t2 t3

�






a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3






�
1 t t2 t3

�






a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3











p0

p1

v0

v1








Hermite polynomials

�
φ0(t) φ1(t) φ2(t) φ3(t)

�
=

�
1 t t2 t3

�






a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3






d

dt

�
φ0(t) φ1(t) φ2(t) φ3(t)

�
=

�
0 1 2t 3t2

�






a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3








Constraints

These constraints give:

                 Interpolate each endpoint
                                          Have correct derivatives at each endpoint





φ0(0) φ1(0) φ2(0) φ3(0)
φ0(1) φ1(1) φ2(1) φ3(1)
dφ0
dt (0) dφ1

dt (0) dφ2
dt (0) dφ3

dt (0)
dφ0
dt (1) dφ1

dt (1) dφ2
dt (1) dφ3

dt (1)



 =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







We can write individual constraints like:

To get:

�
φ0(0) φ1(0) φ2(0) φ3(0)

�
=

�
1 0 02 03

�






a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3










1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3










a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3





=





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







Hermite blending functions



Bezier curves



Bezier curves



Bezier curves



Bezier curves as a tableau



de Casteljau (formal version)



Bezier curve blending functions

n�

i=0

biB
n
i (u)

Curve has the form:



Bezier blending functions

• Bezier-Bernstein polynomials
• here C(n, i) is the number of combinations of n items, taken i at a time
•

C(n, i) =
n!

(n− i)!i!

Bn
i (u) = C(n, i)(1− u)iun−1



Bezier curve properties

• Pass through first, last points
• Tangent to initial, final segments of control polygon
• Lie within convex hull of control polygon
• Subdivide



Bezier curve tricks - I

• Pull a curve 
towards a point 
by placing two 
control points 
on top of one 
another



Bezier curve tricks - II

• Close a curve by 
making endpoints 
the same point
• clean join by making 

segments line up



Subdivision for Bezier curves

• Use De Casteljau (repeated 
linear interpolation) to 
identify points.

• Points as marked in figure 
give two control polygons, 
for two Bezier curves, 
which lie on top of the 
original.

• Repeated subdivision leads 
to a polygon that lies very 
close to the curve

• Limit of subdivision 
process is a curve



Degree raising for Bezier curves

• Idea: add a control  point without changing curve
• Procedure:
• curve with k control points is p(t), k+1 is q(t)
• multiply p(t) by (1-t+t), line up monomials
• gives relation

p(t)=
�k

i=0 pi

�
k
i

�
(1− t)k−iti

q(t)=
�k+1

i=0 qi

�
k
i

�
(1− t)k+1−iti

(1-t+t) p(t)= q(t)



Degree raising for Bezier curves

�
k + 1

i

�
qi =

�
k
i

�
pi +

�
k

i− 1

�
pi−1



Equivalences

• 4 control point Bezier curve is a cubic curve
• so is an Hermite curve
• so we can transform from one to the other
• Easy way:
• notice that 4-point Bezier curve
• interpolates endpoints
• has tangents 3(b_1-b_0),  3(b_3-b_2)
• this gives Hermite->Bezier, Bezier->Hermite

• Hard way:
• do the linear algebra



4-point Bezier curve:

Hermite curve:

�
1 t t2 t3

�






1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1










p0

p1

p2

p3





�
1 t t2 t3

�






1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1










p0

p1

v0

v1





�
1 t t2 t3

�
BbGb

�
1 t t2 t3

�
BhGh



• Say we know G_b 
• what G_h will give the same curve?

• known G_h works similarly

Converting 

BhGh = BbGb

Gh = B−1
h BbGb



Continuity

• Geometric continuity
• G^0   - end points join up
• G^1   - end points join up,  tangents are parallel

• Continuity
• function of parametrization as well as geometry



Achieving geometric continuity

• Bezier curves
• endpoints on top of each other
• end tangents parallel

• Hermite curves
• endpoints on top of each other
• end tangents parallel
• Catmull-Rom construction if we don’t have tangents



Catmull-Rom construction (partial)



Simple surface constructions

• Surfaces can be:
• explicit
• implicit
• parametric



Extruded surfaces

• Geometrical model - 
Pasta machine

• Take curve and 
“extrude” surface 
along vector

• Many human 
artifacts have this 
form - rolled steel, 
etc.

(x(s, t), y(s, t), z(s,t)) = (xc (s), yc (s), zc (s)) + t(v0 ,v1,v2 )

Vector

Curve

t varies along line
s varies along curve



Cones

• From every point on 
a curve, construct a 
line segment 
through a single 
fixed point in space 
- the vertex

• Curve can be space 
or plane curve, but 
shouldn’t pass 
through the vertex

Vertex

Curve

t varies along line

s varies along curve

(x(s, t), y(s, t), z(s,t)) = (1− t)(xc (s), yc (s), zc (s))+ t(v0 ,v1 ,v2 )



Surfaces of revolution

• Plane curve + axis
• “spin” plane curve 

around axis to get 
surface

• Choice of plane is 
arbitrary, choice of 
axis affects surface

• In this case, curve is on    
x-z plane, axis is z 
axis.

(x(s, t), y(s, t), z(s,t)) =

(xc (s) cos(t), xc (s)sin(t), zc (s))



SOR-2

• Many artifacts are 
SOR’s, as they’re easy 
to make on a lathe.

• Controlling is quite 
easy - concentrate on 
the cross section.

• Axis crossing cross-
section leads to ugly 
geometry.

z

yx

t varies around circle

s varies up curve



Ruled surfaces

• Popular, because it’s easy to 
build a curved surface out of 
straight segments - eg 
pavilions, etc.

• Take two space curves, and 
join corresponding points - 
same s - with line segment.

• Even if space curves are lines, 
the surface is usually curved.

(x(s, t), y(s, t), z(s,t)) =
(1− t)(x1(s), y1 (s), z1(s))+

t(x2 (s),y2 (s), z2 (s))



c1(s)

c2(s)

s varies

t v
ar

ies



Normals

• Recall:  normal is cross product of tangent in t direction 
and s direction.

• Cylinder: normal is cross-product of curve tangent and 
direction vector

• SOR: take curve normal and spin round axis



Rendering

• Cylinders: small steps along curve, 
straight segments along t generate 
polygons; exact normal is known.



Rendering

• Cone: small steps in s generate 
straight edges, join with vertex to get 
triangles, normals known exactly 
except at vertex.



Rendering

• SOR: small steps in s generate strips, 
small steps in t along the strip 
generate edges; join up to form 
triangles.  Normals known exactly.



Rendering

• Ruled surface: steps in s generate 
polygons, join opposite sides to 
make triangles - otherwise “non 
planar polygons” result. Normals 
known exactly.


