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Core ideas:  Assembly, Continuity

• We “join up” pieces of curve to meet various constraints
• result is a spline

• Continuity
• Parametric
• C^k :  Curve and derivatives up to k are continuous 
• as a function of parameter value
• Useful for (for example) animation
• Geometric
• G^k: a reparametrisation exists that would achieve C^k
• Useful, because we often don’t require parametric continuity
• e.g. take two Hermite curves, both parametrised by [0, 1], identify 

endpoints and derivatives



Simple cases

• Join up two point Hermite curves
• endpoints the same, vectors not - G^0
• endpoints, vectors the same - G^1 (easy)
• endpoints the same, vectors same direction - G^1 (harder)

• Subdivide a Bezier curve
• result is G^infinity if we reparametrize each segment as we should
• but not necessarily if we move the control points!

• Join up Bezier curves
• endpoints join - G^0
• endpoints join, end segments collinear - G^1



Cubic interpolating splines

• n+1 points P_i
• X_i(t) is curve between P_i, P_i+1



Interpolating Cubic splines,  G^1

• join a series of Hermite curves with equal derivatives.
• But where are the derivative values to come from?
• Measurements

• Cardinal splines
• average points
• t is “tension”
• specify endpoint tangents
• or use difference between first two, last two points

dXi

dt
(0) =

1
2
(1− t)(Pi+1 −Pi−1)



Tension



Interpolating Cubic splines:  C^2

• One parametrization for the whole curve
• divided up into intervals, called knots

• In each segment, there is a cubic curve FOR THAT SEGMENT

• And we must make this lot C^2

Ai(t− ti)3 + Bi(t− ti)2 + Ci(t− ti) + Di

ti ≤ t < ti+1



Continuity

• at interval endpoints, curves must be
• Continuous

• have continuous derivative

• have continuous second derivative

Xi(ti) = Xi−1(ti) Xi(ti+1) = Xi+1(ti+1)
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(ti)



Curves

• Assume we KNOW the derivative at each point
• write derivatives with ‘

Xi(ti) = Pi = Di
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Curves
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C^2 Continuity supplies derivatives

• Second derivative is continuous

• Differentiate curves, rearrange to get

• This is a linear system in tridiagonal form
• can see as recurrence relation - we need two tangents to solve

X��
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C^2 cubic splines

• Recurrence relations 
• d(n-1) equations in d(n+1) unknowns (d is dimension)

• Options:
• give P’_0, P’_1 (easiest, unnatural)
• second derivatives vanish at each end (natural spline)
• give slopes at the boundary 
• vector from first to second, second last to last
• parabola through first three, last three points
• third derivative is the same at first, last knot



More general splines

• We would like to retain continuity, local control
• but drop interpolation

• Mechanism
• get clever with blending functions
• continuity of curve=continuity of blending functions
• we will need to “switch” on or off pieces of function
• e.g. linear example



B-splines

• Knot vector

• Curve

• d is order

t0 < t1 < . . . < tn+k

2 ≤ d ≤ n + 1

X(t) =
n�

k=0

PiNi,d(t)



Recursive definition

• Switches=base case

• Spline

Ni,1 =
�

1 ti ≤ t ≤ ti+1

0 otherwise

Ni,d =
�
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ti+d−1 − ti
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�
Ni+1,d−1(t)



These figures show
blending functions with
a uniform knot vector,

knots at 0, 1, 2, etc.





The B



Closed B-Splines

• Periodically extend the control 
points and the knots

• etc

Pn+1 = P0

tn+1 = t0









A B-spline curve, with knots at 0,1,... and order 5





Repeated knots

• Definition works for repeated knots 
• (if we are understanding about 0/0)

• Repeated knot reduces continuity.  
• A B-spline blending function has continuity Cd-2; if the knot is repeated m 

times, continuity is now Cd-m-1

• e.g. ->  quadratic B-spline (i.e. order 3) with a double knot



Most useful case

• select the first d and the last d knots to be the same
• we then get the first and last points lying on the curve
• also, the curve is tangent to the first and last segment e.g. cubic case below

• Notice that a control point influences at most d parameter 
intervals - local control



top curve has order 3, bottom order 4





Bezier curve is the heavy curve



B-Spline properties

• For a B-spline curve of order d
• if m knots coincide, the curve is Cd-m-1 at the corresponding point
• if d-1 points of the control polygon are collinear, then the curve is tangent 

to the polygon
• if d points of the control polygon are collinear, then the curve and the 

polygon have a common segment
• if d-1 points coincide, then the curve interpolates the common point and 

the two adjacent sides of the polygon are tangent to the curve
• each segment of the curve lies in the convex hull of the associated d points



Recursive definition

• Switches=base case

• Spline

Ni,1 =
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0 otherwise
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