Splines

D.A. Forsyth, with slides from John Hart




Core 1deas: Assembly, Continuity

® We “join up” pieces of curve to meet various constraints
® result is a spline

e Continuity
® Parametric
® (CAk: Curve and derivatives up to k are continuous
® as a function of parameter value
® Useful for (for example) animation
® Geometric
® (G7k: a reparametrisation exists that would achieve CAk
® Useful, because we often don’t require parametric continuity

® c.g. take two Hermite curves, both parametrised by [0, 1], identify
endpoints and derivatives




Simple cases

® Join up two point Hermite curves
® endpoints the same, vectors not - GA0O
® endpoints, vectors the same - G*1 (easy)
® endpoints the same, vectors same direction - GA1 (harder)
® Subdivide a Bezier curve
® result is GMinfinity if we reparametrize each segment as we should
® but not necessarily if we move the control points!
® Join up Bezier curves
® endpoints join - GAO
® endpoints join, end segments collinear - G 1




Cubic interpolating splines

® n+1 points P_1
® X 1(t)1s curve between P_1, P_1+1

Fig. 3.11. The spline segment X ;.




Interpolating Cubic splines, G/ 1

® join a series of Hermite curves with equal derivatives.

® But where are the derivative values to come from?
® Measurements

dX;

1
e Cardinal splines dt (O) - _(1 B t) (P’H'l i P’i—l)
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® average points
® tis “tension”

® specify endpoint tangents

® or use difference between first two, last two points
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Interpolating Cubic splines: CA2

® One parametrization for the whole curve
® divided up into intervals, called knots

a=fg<ti<hh< - <In.1<in=0

® [n each segment, there is a cubic curve FOR THAT SEGMENT

At —t)° +Bi(t —t;)* + Ci(t — t;) + D,

® And we must make this lot CA2

T; =0 <t




Continuity

® at interval endpoints, curves must be
® Continuous

X (ti) = X—1(¢:)
® have continuous derivative
19, € dX,;_
(/ (tz) _ 72—1 (

dt dt
® have continuous second derivative

d*X, d*X,_
dt? dt?




Curves

® Assume we KNOW the derivative at each point
® write derivatives with °

aX;
dt
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CA2 Continuity supplies derivatives

® Second derivative 1s continuous

e Differentiate curves, rearrange to get

AtiP/i_l -+ Q(Ati_l -+ Atz)P/Z + Ati_1P/i+1 —

Ati_l Atz’
3 Pi.1—P;)+3

P,.—P,_
At ( 1)

® This is a linear system in tridiagonal form
® can see as recurrence relation - we need two tangents to solve




CA2 cubic splines

® Recurrence relations
® d(n-1) equations in d(n+1) unknowns (d is dimension)

® Options:

give P’_0, P’_1 (easiest, unnatural)

second derivatives vanish at each end (natural spline)

give slopes at the boundary

® vector from first to second, second last to last

parabola through first three, last three points

third derivative is the same at first, last knot




More general splines

® We would like to retain continuity, local control
® but drop interpolation

® Mechanism
® oct clever with blending functions
® continuity of curve=continuity of blending functions
® we will need to “switch” on or off pieces of function
® c.g. linear example




B-splines

® Knot vector

® dis order




Recursive definition

® Switches=base case

0 otherwise

1 . <t < L.
Ni,lz{ S U S g

t—1;
Nid (t ) Nia-1(t) +
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ticag — 1
( +d ) Nit1.4-1(t)

bivd — tit1
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Fig. 4.22c. The B-splines Np1, Noj.
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These figures show l
blending functions with
a uniform knot vector,
knots at 0, 1, 2, etc.
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Fig. 4.22d. The B-splines N9, Nas.
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Closed B-Splines

® Periodically extend the control
points and the knots

Pn—l—l — PO

tnt+1 = o
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Fig. 4.26. B-splines with uniform and non-uniform knot vectors
for a closed B-spline curve.




Fig. 4.27a. A closed
B-spline curve
with £k = 3,n = 3.

Fig. 4.27b. A closed
B-spline curve
with k = 4,n = 6.




Fig. 4.27c. A closed B-spline curve with k = 3,n = 8.




A B-spline curve, with knots at 0,1,... and order 5







Repeated knots

® Definition works for repeated knots
® (if we are understanding about 0/0)
® Repeated knot reduces continuity.

® A B-spline blending function has continuity Cd-2; if the knot is repeated m
times, continuity is now Cd-m-1

® c.g.-> quadratic B-spline (i.e. order 3) with a double knot




Most useful case

® select the first d and the last d knots to be the same

® we then get the first and last points lying on the curve
® also, the curve is tangent to the first and last segment e.g. cubic case below

® Notice that a control point influences at most d parameter
intervals - local control

Fig. 4.24a. B-splines for an open B-spline curve
with uniform knot vector.




Fig. 4.25a. B-spline
curve with k = 3, n = 5.

Fig. 4.25b. B-spline
curve with k =4, n = 7.

top curve has order 3, bottom order 4




Fig. 4.24b. B-splines for an open B-spline curve
with non-uniform knot vector.




Fig. 4.25c. B-spline curve with k = 3,n = 9 and the Bézier curve
of degree 9 with the same control polygon.

Bezier curve is the heavy curve




B-Spline properties

® For a B-spline curve of order d

if m knots coincide, the curve is Cdm-1 at the corresponding point

if d-1 points of the control polygon are collinear, then the curve is tangent
to the polygon

if d points of the control polygon are collinear, then the curve and the
polygon have a common segment

if d-1 points coincide, then the curve interpolates the common point and
the two adjacent sides of the polygon are tangent to the curve

each segment of the curve lies in the convex hull of the associated d points



Recursive definition

® Switches=base case

0 otherwise
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