Splines

D.A. Forsyth, with slides from John Hart

Core ideas: Assembly, Continuity

- We "join up" pieces of curve to meet various constraints
- result is a spline
- Continuity
- Parametric
- $\mathrm{C}^{\wedge} \mathrm{k}$: Curve and derivatives up to k are continuous
- as a function of parameter value
- Useful for (for example) animation
- Geometric
- $\mathrm{G}^{\wedge} \mathrm{k}$: a reparametrisation exists that would achieve $\mathrm{C}^{\wedge} \mathrm{k}$
- Useful, because we often don't require parametric continuity
- e.g. take two Hermite curves, both parametrised by [0, 1], identify endpoints and derivatives

Simple cases

- Join up two point Hermite curves
- endpoints the same, vectors not $-\mathrm{G}^{\wedge} 0$
- endpoints, vectors the same $-\mathrm{G}^{\wedge} 1$ (easy)
- endpoints the same, vectors same direction - $\mathrm{G}^{\wedge} 1$ (harder)
- Subdivide a Bezier curve
- result is G^{\wedge} infinity if we reparametrize each segment as we should
- but not necessarily if we move the control points!
- Join up Bezier curves
- endpoints join - $\mathrm{G}^{\wedge} 0$
- endpoints join, end segments collinear - $\mathrm{G}^{\wedge} 1$

Cubic interpolating splines

- n+1 points P_i
- $X_{-}\left(\mathrm{i}(\mathrm{t})\right.$ is curve between $\mathrm{P}_{-} \mathrm{i}, \mathrm{P}_{-} \mathrm{i}+1$

Fig. 3.11. The spline segment \boldsymbol{X}_{i}.

Interpolating Cubic splines, $\mathrm{G}^{\wedge} 1$

- join a series of Hermite curves with equal derivatives.
- But where are the derivative values to come from?
- Measurements
- Cardinal splines

$$
\frac{d \mathbf{X}_{i}}{d t}(0)=\frac{1}{2}(1-t)\left(\mathbf{P}_{i+1}-\mathbf{P}_{i-1}\right)
$$

- average points
- t is "tension"
- specify endpoint tangents
- or use difference between first two, last two points

Tension

Interpolating Cubic splines: $\mathrm{C} \wedge 2$

- One parametrization for the whole curve
- divided up into intervals, called knots

$$
a=t_{0}<t_{1}<t_{2}<\cdots<t_{N-1}<t_{N}=b
$$

$$
\Delta t_{i}:=t_{i+1}-t_{i}
$$

- In each segment, there is a cubic curve FOR THAT SEGMENT

$$
\mathbf{A}_{i}\left(t-t_{i}\right)^{3}+\mathbf{B}_{i}\left(t-t_{i}\right)^{2}+\mathbf{C}_{i}\left(t-t_{i}\right)+\mathbf{D}_{i}
$$

- And we must make this lot $\mathrm{C}^{\wedge} 2$

$$
t_{i} \leq t<t_{i+1}
$$

Continuity

- at interval endpoints, curves must be
- Continuous

$$
\mathbf{X}_{i}\left(t_{i}\right)=\mathbf{X}_{i-1}\left(t_{i}\right) \quad \mathbf{X}_{i}\left(t_{i+1}\right)=\mathbf{X}_{i+1}\left(t_{i+1}\right)
$$

- have continuous derivative

$$
\frac{d \mathbf{X}_{i}}{d t}\left(t_{i}\right)=\frac{d \mathbf{X}_{i-1}}{d t}\left(t_{i}\right)
$$

- have continuous second derivative

$$
\frac{d^{2} \mathbf{X}_{i}}{d t^{2}}\left(t_{i}\right)=\frac{d^{2} \mathbf{X}_{i-1}}{d t^{2}}\left(t_{i}\right)
$$

Curves

- Assume we KNOW the derivative at each point
- write derivatives with ${ }^{\text {• }}$

$$
\begin{array}{r}
\mathbf{X}_{i}\left(t_{i}\right)=\mathbf{P}_{i}=\mathbf{D}_{i} \\
\frac{d \mathbf{X}_{i}}{d t}\left(t_{i}\right)=\mathbf{X}_{i}^{\prime}\left(t_{i}\right)=\mathbf{P}_{i}^{\prime}=\mathbf{C}_{i} \\
\mathbf{X}_{i}\left(t_{i+1}\right)=\mathbf{P}_{i+1}=\mathbf{A}_{i} \Delta t_{i}^{3}+\mathbf{B}_{i} \Delta t_{i}^{2}+\mathbf{C}_{i} \Delta t_{i}+\mathbf{D}_{i} \\
\mathbf{X}_{i}^{\prime}\left(t_{i+1}\right)=\mathbf{P}_{i+1}^{\prime}=3 \mathbf{A}_{i} \Delta t_{i}^{2}+2 \mathbf{B}_{i} \Delta t_{i}+\mathbf{C}_{i}
\end{array}
$$

Curves

$$
\begin{aligned}
\mathbf{X}_{i}(t)= & \mathbf{P}_{i}\left(2 \frac{\left(t-t_{i}\right)^{3}}{\left(\Delta t_{i}\right)^{3}}-3 \frac{\left(t-t_{i}\right)^{2}}{\left(\Delta t_{i}\right)^{2}}+1\right)+ \\
& \mathbf{P}_{i+1}\left(-2 \frac{\left(t-t_{i}\right)^{3}}{\left(\Delta t_{i}\right)^{3}}+3 \frac{\left(t-t_{i}\right)^{2}}{\left(\Delta t_{i}\right)^{2}}\right)+ \\
& \mathbf{P}_{i}^{\prime}\left(\frac{\left(t-t_{i}\right)^{3}}{\left(\Delta t_{i}\right)^{2}}-2 \frac{\left(t-t_{i}\right)^{2}}{\left(\Delta t_{i}\right)}+\left(t-t_{i}\right)\right)+ \\
& \mathbf{P}_{i+1}^{\prime}\left(\frac{\left(t-t_{i}\right)^{3}}{\left(\Delta t_{i}\right)^{2}}-\frac{\left(t-t_{i}\right)^{2}}{\left(\Delta t_{i}\right)}\right)
\end{aligned}
$$

$\mathrm{C}^{\wedge} 2$ Continuity supplies derivatives

- Second derivative is continuous

$$
\mathbf{X}_{i-1}^{\prime \prime}\left(t_{i}\right)=\mathbf{X}_{i}\left(t_{i}\right)
$$

- Differentiate curves, rearrange to get

$$
\begin{array}{r}
\Delta t_{i} \mathbf{P}_{i-1}^{\prime}+2\left(\Delta t_{i-1}+\Delta t_{i}\right) \mathbf{P}_{i}^{\prime}+\Delta t_{i-1} \mathbf{P}_{i+1}^{\prime}= \\
3 \frac{\Delta t_{i-1}}{\Delta t_{i}}\left(\mathbf{P}_{i+1}-\mathbf{P}_{i}\right)+3 \frac{\Delta t_{i}}{\Delta t_{i-1}}\left(\mathbf{P}_{i}-\mathbf{P}_{i-1}\right)
\end{array}
$$

- This is a linear system in tridiagonal form
- can see as recurrence relation - we need two tangents to solve

$\mathrm{C}^{\wedge} 2$ cubic splines

- Recurrence relations
- $d(n-1)$ equations in $d(n+1)$ unknowns (d is dimension)
- Options:
- give P'_0, P'_1 (easiest, unnatural)
- second derivatives vanish at each end (natural spline)
- give slopes at the boundary
- vector from first to second, second last to last
- parabola through first three, last three points
- third derivative is the same at first, last knot

More general splines

- We would like to retain continuity, local control
- but drop interpolation
- Mechanism
- get clever with blending functions
- continuity of curve=continuity of blending functions
- we will need to "switch" on or off pieces of function
- e.g. linear example

B-splines

- Knot vector

$$
t_{0}<t_{1}<\ldots<t_{n+k}
$$

- Curve

$$
\mathbf{X}(t)=\sum_{k=0}^{n} \mathbf{P}_{i} \mathbf{N}_{i, d}(t)
$$

- d is order

$$
2 \leq d \leq n+1
$$

Recursive definition

- Switches=base case

$$
N_{i, 1}=\left\{\begin{array}{rr}
1 & t_{i} \leq t \leq t_{i+1} \\
0 & \text { otherwise }
\end{array}\right.
$$

- Spline

$$
\begin{aligned}
N_{i, d}= & \left(\frac{t-t_{i}}{t_{i+d-1}-t_{i}}\right) N_{i, d-1}(t)+ \\
& \left(\frac{t_{i+d}-t}{t_{i+d}-t_{i+1}}\right) N_{i+1, d-1}(t)
\end{aligned}
$$

Fig. 4.22c. The B-splines N_{01}, N_{21}.

These figures show blending functions with a uniform knot vector, knots at $0,1,2$, etc.

Fig. 4.22d. The B-splines N_{12}, N_{22}.

Fig. 4.22e. The B-splines N_{03}, N_{13}.

The B

Closed B-Splines

- Periodically extend the control points and the knots

$$
\begin{aligned}
\mathbf{P}_{n+1} & =\mathbf{P}_{0} \\
t_{n+1} & =t_{0}
\end{aligned}
$$

- etc

Fig. 4.26a.

Fig. 4.26b.

Fig. 4.26. B-splines with uniform and non-uniform knot vectors for a closed B-spline curve.

Fig. 4.27a. A closed B-spline curve
with $k=3, n=3$.

Fig. 4.27b. A closed
B-spline curve with $k=4, n=6$.

Fig. 4.27c. A closed B-spline curve with $k=3, n=8$.

A B-spline curve, with knots at $0,1, \ldots$ and order 5

Repeated knots

- Definition works for repeated knots
- (if we are understanding about 0/0)
- Repeated knot reduces continuity.
- A B-spline blending function has continuity $\mathrm{Cd}-2$; if the knot is repeated m times, continuity is now Cd-m-1
- e.g. -> quadratic B-spline (i.e. order 3) with a double knot

Most useful case

- select the first d and the last d knots to be the same
- we then get the first and last points lying on the curve
- also, the curve is tangent to the first and last segment e.g. cubic case below
- Notice that a control point influences at most d parameter intervals - local control

Fig. 4.24a. B-splines for an open B-spline curve with uniform knot vector.

Fig. 4.25a. B-spline curve with $k=3, n=5$.

Fig. 4.25b. B-spline curve with $k=4, n=7$.

top curve has order 3 , bottom order 4

Fig. 4.24b. B-splines for an open B-spline curve with non-uniform knot vector.

Fig. 4.25c. B-spline curve with $k=3, n=9$ and the Bézier curve of degree 9 with the same control polygon.

Bezier curve is the heavy curve

B-Spline properties

- For a B-spline curve of order d
- if m knots coincide, the curve is $\mathrm{C}^{\mathrm{d}-\mathrm{m}-1}$ at the corresponding point
- if d-1 points of the control polygon are collinear, then the curve is tangent to the polygon
- if d points of the control polygon are collinear, then the curve and the polygon have a common segment
- if d-1 points coincide, then the curve interpolates the common point and the two adjacent sides of the polygon are tangent to the curve
- each segment of the curve lies in the convex hull of the associated d points

Recursive definition

- Switches=base case

$$
N_{i, 1}=\left\{\begin{array}{rr}
1 & t_{i} \leq t \leq t_{i+1} \\
0 & \text { otherwise }
\end{array}\right.
$$

- Spline

$$
\begin{aligned}
N_{i, d}= & \left(\frac{t-t_{i}}{t_{i+d-1}-t_{i}}\right) N_{i, d-1}(t)+ \\
& \left(\frac{t_{i+d}-t}{t_{i+d}-t_{i+1}}\right) N_{i+1, d-1}(t)
\end{aligned}
$$

