Texture

CS 419

Slides by Zicheng Liao (Courtesy of Ali Farhadi)
Texture scandals
Bush campaign digitally altered TV ad

President Bush’s campaign acknowledged Thursday that it had digitally altered a photo that appeared in a national cable television commercial. In the photo, a handful of soldiers were multiplied many times.

This section shows a sampling of the duplication of soldiers.
What is Texture?
Texture spectrum

Diversity: color, scale, content, caused by geometry or color
How textures differ from objects

- **Stationary**: similar views as window moves around in (b), because the statistical distribution is spatially invariant.
- **Locality**: each pixel in (b) is only related to a small set of neighbors.

[Wei & Levoy SIGGRAPH2000]
Texture synthesis

Input

Output
Two crucial algorithmic points

• Nearest neighbor search

• Dynamic programming
Algorithm I: NN + sampling

• How to determine a unknown pixel value?
 – Ask neighbors (locality)

• Find pixels with similar neighbors in the input, and then randomly take one

[Efros & Leung ICCV99]
NN patch match

- Find a few pixels with similar neighbors

[Efros & Leung ICCV99]
Randomly Sample

- Find a few pixels with similar neighbors
- Randomly take one matched pixel
The steps in a single iteration

1. Ask neighbors
2. Nearest neighbor match
3. Randomly take one
4. An unknown pixel
Algorithm

1. Grow from the border of an input texture
2. For each unknown pixel p on the boundary
3. Gather the neighborhood centered at p: $N(p)$
4. Find patches $N(p')$ from input: $d(N(p), N(p')) < (1 + \epsilon)d(N(p), N_{best})$
5. Randomly take a p' to fill in p

$\epsilon = 0.1$

[Efros & Leung ICCV99]
Discussion

1. Grow from the border of an input texture
2. For each unknown pixel \(p \) on the boundary
3. Gather the neighborhood centered at \(p \): \(N(p) \)
4. Find patches \(N(p') \) from input: \(d(N(p), N(p')) < (1 + \epsilon)d(N(p), N_{best}) \)
5. Randomly take a \(p' \) to fill in \(p \)

\(\epsilon = 0.1 \)

• How does the choice of \(\epsilon \) effect the result?
 ➢ Not much, some algorithm even set it to 0.

• Other than random sample?
 ➢ Use the distance to bias the sampling, favor better matches

[Efros & Leung ICCV99]
Discussion (2)

1. Grow from the border of an input texture
2. For each unknown pixel p on the boundary
3. Gather the neighborhood centered at p: $N(p)$
4. Find patches $N(p')$ from input: $d(N(p), N(p')) < (1 + \epsilon)d(N(p), N_{\text{best}})$
5. Randomly take a p' to fill in p

- Distance metric
- Window size
- Order to synthesize
Patch distance metric

- Normalized sum of squared difference
- Further neighbors take less weight
 - Gaussian mask
 - Preserve local structure

[Efros & Leung ICCV99]
Window Size

- Effect of window size on the results

[Efros & Leung ICCV99]
Window Size

- Control the degree of randomness

[Efros & Leung ICCV99]
The order matters

[Efros & Leung ICCV99]
Some results

[Efros & Leung ICCV99]
More results
Some results

[Efros & Leung ICCV99]
Some results

white bread

brick wall

[Efros & Leung ICCV99]
Hole Filling

[Efros & Leung ICCV99]
Extrapolation

[A misleading result..]

[Efros & Leung ICCV99]
Failure Cases

Growing garbage

Verbatim copying

[Efros & Leung ICCV99]
Pros and Cons

• Very simple
• Easy to implement: 32 lines of matlab code!
• Works well for a variety of synthetic and real-world textures

• VERY VERY slow!
 (A nearly identical idea was proposed in 1981 by Barber but discarded due to computational intractability)

• Idea
 – A patch a time, instead of a pixel

[Efros & Leung ICCV99]
Image Quilting: Patch-based method

(a) random blocks concatenated together
(b) Blocks overlap, new block is chosen so that the overlap regions best agree
(c) A minimum cost (optimal) path is computed within the overlap

[Efros & Freeman SIGGRAPH01]
Curved path VS vertical path

overlapping blocks

vertical boundary

overlap error

min. error boundary

[Efros & Freeman SIGGRAPH01]
How to find the optimal path?

• Brute force: exponential number of paths
• Greedy algorithm? No..
• Key observation: every optimal sub-path is part of an optimal full path

$e = (B1-B2)^2$

\Rightarrow Dynamic programming

http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=dynProg
(A nice dynamic programming tutorial)

[Efros & Freeman SIGGRAPH01]
Dynamic programming

\[e_{i,j}: \text{node cost at pixel (i,j)} \]
\[E_{i,j}: \text{optimal path cost up to node (i,j)} \]
\[k_{i,j}: \text{index to the optimal (next) sub-path} \]

Initialize: \[e_{i,j} = (B1_{ij} - B2_{ij})^2 \]
for \(i = 2: h; \) for \(j = 1: w \)
\[E_{i,j} = e_{ij} + \min (E_{i-1,j-1}, E_{i-1,j}, E_{i-1,j+1}) \]
\[k_{i,j} = \arg\min (E_{i-1,j-1}, E_{i-1,j}, E_{i-1,j+1}) \]
end; end

e_{i,j}: \text{node cost at pixel (i,j)}
E_{i,j}: \text{optimal path cost up to node (i, j)}
k_{i,j}: \text{index to the optimal (next) sub-path}
Dynamic programming

1. Compute path costs: start from the bottom, iteratively go up, end at the top

2. Get optimal path: compare the path cost of nodes on the top row, find the minimum cost node, and use $k_{i,j}$ to trace back for the optimal path down to the bottom
Results

[Efros & Freeman SIGGRAPH01]
More results

[Efros & Freeman SIGGRAPH01]
Failure cases

[Efros & Freeman SIGGRAPH01]
Texture Transfer

\[e_{i,j} = \alpha (B_{1ij} - B_{2ij})^2 + (1 - \alpha) (Sc_{uv} - Tc_{i,j})^2 \]

\((u,v)\): the coordinate of patch \(B_{2i,j}\) in the source texture

\(Sc\): source correspondence map

\(Tc\): target correspondence map
More results

source texture

target images

texture transfer results

[Efros & Freeman SIGGRAPH01]
More results

[Efros & Freeman SIGGRAPH01]
More results

parmesan

rice

[Efros & Freeman SIGGRAPH01]
Pros and Cons

- Very simple
- Easy to implement
- Work well
- Fast!

- **Memoryless**
 - Cannot keep track of old solutions: A general problem for DP

- **Better algorithm**
 - Graph cut [Graphcut texture, Kwatra SIGGRAPH03]
Image Analogy

[Hertzman et al. SIGGRAPH01]
Image Analogy

[Hertzman et al. SIGGRAPH01]
Image Analogy

Problem ("IMAGE ANALOGY"): Given a pair of images A (unfiltered source) and filtered image A' (filtered source), along with some additional unfiltered target image B, synthesize a new filtered target image B' such that:

\[A : A' :: B : B' \]

[Hertzman et al. SIGGRAPH01]
Basic idea

For q in B', find index p in source images such that

$$A'(p) \sim B'(q) \text{ and } A(p) \sim B(q)$$

Concatenate the windows of p in source pair, and that of q in the target pair, then match

[Hertzman et al. SIGGRAPH01]
Applications

• Learning a complicated filter from data
• Super-resolution
• Exemplar-based NPR
• Texture synthesis!

[Hertzman et al. SIGGRAPH01]
Training

Unfiltered source (A)

Filtered source (A')

[Hertzman et al. SIGGRAPH01]
Unfiltered target (B)

Learned filtered target (B')

[Hertzman et al. SIGGRAPH01]
Unfiltered target (B)

Learned filtered target (B')

[Hertzman et al. SIGGRAPH01]
Learn to Blur

[Hertzman et al. SIGGRAPH01]
Texture by Numbers

[Texture by Numbers by Hertzman et al. SIGGRAPH01]
Colorization

Unfiltered source (A) Filtered source (A')

Unfiltered target (B) Filtered target (B')

[Hertzman et al. SIGGRAPH01]
Super-resolution

Unfiltered source

Filtered source

[Hertzman et al. SIGGRAPH'01]
Super-resolution (result)

Unfiltered target

Filtered target

[Hertzman et al. SIGGRAPH01]
Super-resolution

Unfiltered source

Filtered source

[Hertzman et al. SIGGRAPH01]
Super-resolution (result)

[Hertzman et al. SIGGRAPH01]
Wrap-up: The two steps of texture synthesis

• **Modeling** ➔ Visual fidelity
 – How to estimate the stochastic process from a given finite texture sample
 – Both used MRF model (locality and stationary)

• **Sampling** ➔ Computational cost
 – How to develop an efficient sampling procedure based on the model
 – Pixel by pixel VS patch-based

 – Sampling under guidance: texture transfer, image analogy
Two problems remains

• Preserving scene structure
 – Prioritize synthesize order \cite{Criminisi et al. CVPR03}

• Efficient patch matching
 – Fast approximate NN search \cite{Barnes et al. SIGGRAPH09}
Inpainting

[Criminisi et al. CVPR03]
Synthesize Order Matters

[Crminisi et al. CVPR03]
Choose the order

• Confidence
 – Favor unknown pixels with more (reliable) neighbor information

\[C(p) = \sum_{q \in \Psi_p \cap \Phi} \frac{C(q)}{|\Psi_p|} \]

\(\Psi_p \): Neighborhood of \(p \)

[Crnimisi et al. CVPR03]
Choose the order

- **Data term**
 - Favor starting from strong edges (indication of high saliency for structures)

\[
D(p) = \frac{|\nabla I_p \perp \cdot n_p|}{\alpha}
\]

[Criminisi et al. CVPR03]
Choose the order

• Priority
 – Balance between confidence and data term

\[P(p) = C(p) \cdot D(p) \]

• Algorithm

 1. Extract the manually selected initial front \(\delta \Omega^0 \).
 2. Repeat until done:
 1a. Identify the fill front \(\delta \Omega^t \). If \(\Omega^t = \emptyset \), exit.
 1b. Compute priorities \(P(p) \) for all \(p \in \delta \Omega^t \).
 2a. Find the patch \(\Psi_{\hat{p}} \) with the maximum priority, i.e.,
 \[\Psi_{\hat{p}} | \hat{p} = \arg \max_{p \in \delta \Omega^t} P(p) \]
 2b. Find the exemplar \(\Psi_{\hat{q}} \in \Phi \) that minimizes \(d(\Psi_{\hat{p}}, \Psi_{\hat{q}}) \).
 2c. Copy image data from \(\Psi_{\hat{q}} \) to \(\Psi_{\hat{p}} \).
 3. Update \(C(p) \) for all \(p \in \Psi_{\hat{p}} \cap \Omega \)

[Crinini et al. CVPR03]
Results

[Criminisi et al. CVPR03]
More results

Input

Result

[Criminisi et al. CVPR03]
More results

Input

Masked target region

Result

[Criminis et al. CVPR03]
More results

[Criminisi et al. CVPR03]
Fast Approximate NN search

• Brute force search
 – Sliding window
 – Exact answer, but too slow

• Better idea
 – **Local coherence**: nearby windows have high probability to match nearby windows in the source image

[Barnes et al. SIGGRAPH09]
Fast ANN search

(a) Random initialization,
(b) Propagate good matches \rightarrow 20-100x speedup
(c) Search nearby

[Barnes et al. SIGGRAPH09]
Add User Constraints

• Mark an hole to fill in (standard process)

• Add extra label, partly inside the hole, partly outside

• Limit the search space for labeled pixels inside the hole to outside regions with the same label

[Barnes et al. SIGGRAPH09]
Add User Constraints

(d) input
(e) hole
(f) completion (close up)

(g) same input
(h) hole and guides
(i) guided (close up)

[Barnes et al. SIGGRAPH09]
More results

(a) input (b) hole and guides (c) completion result

[Barnes et al. SIGGRAPH09]
More results

(a) original
(b) hole+constraints
(c) hole filled

(d) constraints
(e) constrained retarget
(f) reshuffle

[Barnes et al. SIGGRAPH09]
Retargeting

• Make an image bigger or smaller in one direction
 – e.g. Change aspect ratio

• Traditional
 – Interpolation: content distortion
 – Cut off pixels: lose important content

• Seam Carving
 – Cut out a curve of pixels that “does not matter much”
Example

[Avidan&Shamir. SIGGRAPH07]
Find a seam

- Define an optimal seam
 - Vertical seam, horizontal seam
 - Energy
 - Gradient
 - Entropy, HOG, Segmentation, Saliency, Corner detector, eye gaze

\[
e_1(I) = \left| \frac{\partial}{\partial x} I \right| + \left| \frac{\partial}{\partial y} I \right|
\]

- Optimal seam: A seam with minimum energy \rightarrow dynamic programming

[Avidan&Shamir. SIGGRAPH07]
Find a seam

Initialize: \(e_{i,j} = \left| \frac{\partial}{\partial x} I_{ij} \right| + \left| \frac{\partial}{\partial y} I_{ij} \right| \)

for \(i = 2: h; \) for \(j = 1: w \)

\(E_{i,j} = e_{ij} + \min (E_{i-1,j-1}, E_{i-1,j}, E_{i-1,j+1}) \)

\(k_{i,j} = \arg\min (E_{i-1,j-1}, E_{i-1,j}, E_{i-1,j+1}) \)

end; end

Exactly the same DP, different energy term
(Compare with the algorithm of image quilting (P33)!

[Avidan&Shamir. SIGGRAPH07]
Visualization of seams

Image

Horizontal seams

Vertical seams

Blue: low cost seams
Red: high cost seams
Results

(a) Original (b) Crop (c) Column (d) Seam

[Avidan&Shamir. SIGGRAPH07]
More results

input

output

[Avidan&Shamir. SIGGRAPH07]
Difference Energies make a difference

(a) Original

(b) e_1

(c) $e_{Entropy}$

(d) e_{HoG}

(e) Segmentation and L_1

[Avidan&Shamir. SIGGRAPH07]
Seam insertion

- Finding and inserting the optimum seam will most likely insert the same seam again and again, resulting in (b)
- Instead, inserting the seams in order of removal (c), achieves better result (d)

[Avidan&Shamir. SIGGRAPH07]
More results

input

widening by seam insertion

[Avidan&Shamir. SIGGRAPH07]
Seam carving and insertion

Input

Seam Carving result

Rescaling by interpolation

[Avidan&Shamir. SIGGRAPH07]
Failure case: need extra constraints

Figure 14: Retargeting the left image with e_1 alone (middle), and with a face detector (right).

[Avidan&Shamir. SIGGRAPH07]
Constrained Retargeting

Main idea: user supplied constraints (mask), high cost for seam crossing the masked region

[Input + constraints] [Retarget without constraints] [Retarget with constraints]

[Barnes et al. SIGGRAPH09]
More results

Input + constraints

Retarget without constraints

Retarget with constraints

[Barnes et al. SIGGRAPH09]
More results

Input + constraints

Retarget without constraints

Retarget with constraints

[Barnes et al. SIGGRAPH09]
More results

Input + constraints

Retarget without constraints

Retarget with constraints

[Barnes et al. SIGGRAPH09]
Local scale editing

(a) building marked by user

(b) scaled up, preserving texture

(c) bush marked by user

(d) scaled up, preserving texture.

[Barnes et al. SIGGRAPH09]
Reshuffling

input Reshuffled

[Barnes et al. SIGGRAPH09]
More Reshuffling

[Input images]

[Barnes et al. SIGGRAPH09]
More Reshuffling

[Barnes et al. SIGGRAPH09]
Summary

• Texture
 – Stationary
 – Locality

• Scene
 – Texture
 – Structure (edges, object contours, etc)

• Two crucial algorithmic points
 – Nearest neighbor search
 – Dynamic programming
Summary (2)

• Patch representation
 – RGB, luminance, CIELAB...
 – Gradient, HOG, Harris corner detector, steerable filter
 – Saliency
 – Entropy

• Patch distance
 – L1 norm, L2 norm, sum of square
 – Gaussian weighted sum of square

• Patch match algorithm
 – Brute force NN
 – Approximate NN: local coherence
 – Tree structure: kd-tree (used in the image analogy method)
 – Dimension reduction: PCA, vector quantization

• Multi-scale representation
 – Gaussian pyramid (used in the image analogy method)