Rendering diffuse interreflections

D.A. Forsyth

with slides from John Hart

Radiosity and diffuse interreflections

- Assume we're in a world of diffuse surfaces
- Rendering
- cast eye rays
- evaluate radiosity at first hit
- average, stick into pixel
- Not practical --- we don’t know radiosity
- Model

Interreflections are significant

From Koenderink slides on image texture and the flow of light

Radiometry

- Questions:
- how "bright" will surfaces be?
- what is "brightness"?
- measuring light
- interactions between light and surfaces

- Core idea - think about light arriving at a surface
- Around any point is a hemisphere of directions
- Simplest problems can be dealt with by reasoning about this hemisphere

Interreflection model

For the moment, read this as
incoming light

Terminology

- Radiosity -
- total power emitted by a surface, per unit area, irrespective of direction
- contains terms due to reflection and due to emitted light
- eg diffuser box
- appropriate unit for describing intensity of diffuse surfaces
- Exitance
- total internally generated power emitted by a surface, per unit area, irrespective of direction
- non-zero only for luminaires
- things that make light internally
- appropriate unit for describing intensity of diffuse luminaires

Radiosity due to an area source

- Assume
- source has $\mathrm{B}=\mathrm{E}$ (luminaire- makes light)
- receiver has $\mathrm{E}=0$
- doesn't make light
- $\operatorname{Vis}(x, u)=1$ if x can see u
- 0 otherwise
- Derive later
- what do we do with it?

$$
B(x)=\rho(x) \int_{S} \frac{\cos \theta_{i} \cos \theta_{s}}{\pi r^{2}} V i s(x, u) E(u) d A_{s}
$$

All diffuse surfaces are area sources!

- Receiver can't tell whether light is created or reflected at source
- If receiver is luminaire (makes light), that just adds
- Diffuse interreflection equation
- $\operatorname{vis}(x, u)=1$ if they can see each other, 0 otherwise
- Notice nasty property
- B (unknown) is inside the integral!
- Fredholm equation of the second kind

$$
B(\mathbf{x})=E(\mathbf{x})+\rho(\mathbf{x}) \int_{S} \frac{\cos \theta_{i} \cos \theta_{s}}{\pi r^{2}} \operatorname{Vis}(\mathbf{x}, \mathbf{u}) B(\mathbf{u}) d A_{s}
$$

Evaluating the radiosity

- cast eye rays
- evaluate radiosity at first hit
- average, stick into pixel
- Not practical --- we don't know radiosity
- Model

$$
B(x)=E(x)+\rho_{d}(x) \int_{\substack{\text { all other } \\ \text { surfaces }}} B(u) \frac{\cos \theta_{i} \cos \theta_{s}}{\operatorname{\pi r}(x, u)^{2}} \operatorname{Vis}(x, u) d A_{u}
$$

Diffuse-diffuse transfer

- Again, hard to render because
- many paths are important, even more are not
- most do not reach the light
- we don't know how to find the important ones

Useful notational trick

- Write

$$
\rho(\mathbf{x}) \int_{S} \frac{\cos \theta_{i} \cos \theta_{s}}{\pi r^{2}} V i s(\mathbf{x}, \mathbf{u}) B(\mathbf{u}) d \mathbf{u}_{s}=\rho(\mathbf{x}) \int_{S} K(\mathbf{x}, \mathbf{u}) B(\mathbf{u}) d \mathbf{u}_{s}
$$

- Think of
- functions as very long vectors
- $K(x, u)$ as a matrix
- write

$$
\rho(\mathbf{x}) \int_{S} K(\mathbf{x}, \mathbf{u}) B(\mathbf{u}) d \mathbf{u}_{s}=\rho \mathcal{K} B
$$

Core ideas: Neumann series

- We have

$$
B(x)=E(x)+\rho_{d}(x) \int_{\substack{\text { all oother } \\ \text { surfaes }}} B(u) \frac{\cos \theta_{i} \cos \theta_{s}}{\pi r(x, u)^{2}} \operatorname{Vis}(x, u) d A_{u}
$$

- Can write:
- Which gives

$$
B=E+(\rho \mathcal{K}) E+(\rho \mathcal{K})(\rho \mathcal{K}) E+(\rho \mathcal{K})^{3} E+\ldots
$$

Exitance
Source term
One bounce
Two bounces

The terms

$$
B=E+(\rho \mathcal{K}) E+(\rho \mathcal{K})(\rho \mathcal{K}) E+(\rho \mathcal{K})^{3} E+\ldots
$$

mostly zero
Source term

Can change fast - shadows, etc.
One bounce
Two bounces

Changes much more slowly, because K smoothes

Changes even more slowly, because K smoothes

Using an estimate

- Notice:

$$
B=E+(\rho \mathcal{K}) B
$$

- Assume that I have a very rough estimate of B
- I could render this using

$$
B=E+(\rho \mathcal{K}) \hat{B}
$$

- This isn't such a good idea, because our shadows will be mangled

The right way

$$
B=E+(\rho \mathcal{K}) E+(\rho \mathcal{K})(\hat{B}-E)
$$

Can change fast - shadows, etc.

One or more bounces

Changes much more slowly, because K smoothes, so we should approximate this

Computing the integrals

- Two terms
- source term

$$
\rho(\mathbf{x}) \int K(\mathbf{x}, \mathbf{u}) E(\mathbf{u}) d \mathbf{u}
$$

- we expect to need multiple samples, some large values, large changes over space
- large variance will be ugly - should compute this term carefully at each point to render
- indirect term
- this term should change slowly over space, and should be smaller in value
- large variance less ugly - we can use fewer samples and pool samples

$$
\rho(\mathbf{x}) \int K(\mathbf{x}, \mathbf{u})(\hat{B}(\mathbf{u})-E(\mathbf{u})) d \mathbf{u}
$$

Integrals with importance sampling

- Recall definition:

$$
\rho(\mathbf{x}) \mathcal{K} F=\rho(\mathbf{x}) \int K(\mathbf{x}, \mathbf{u}) F(\mathbf{u}) d \mathbf{u}
$$

- How to evaluate this integral at a point?
- obtain

$$
\begin{gathered}
\mathbf{u}_{i} \sim p(\mathbf{u}) \\
\frac{1}{N} \sum_{i=1}^{N} \frac{K\left(\mathbf{x}, \mathbf{u}_{i}\right) F\left(\mathbf{u}_{i}\right)}{p\left(\mathbf{u}_{i}\right)}
\end{gathered}
$$

- Form:
- Similar to evaluating illumination from area source

Importance sampling

- What is a good $\mathrm{p}(\mathrm{u})$?
- $p(u)$ should be big when $K(x, u) F(u)$ is big
- this helps to control variance
- known as importance sampling
- Significant considerations:
- fast variation in $\mathrm{F}(\mathrm{u})$
- fast variation in K
- usually due to visibility
- How many samples?
- fixed number
- may be expensive, ineffective
- by estimate of variance
- this goes down as $1 / \mathrm{N}$, which is very bad news

Computing the direct term

- We know where E is non-zero
- luminaires
- zero at most points
- Treat these as area sources
- ie samples randomly distributed across area
- number of samples prop to intensity, total energy
- or stratified sampling
- use visibility considerations to choose which sources are sampled

$$
\rho(\mathbf{x}) \int K(\mathbf{x}, \mathbf{u}) E(\mathbf{u}) d \mathbf{u}
$$

Computing the indirect term

- Small (ish)
- Varies relatively slowly across space
- Non-zero at most points
- Don't really know where it will be large
- Strategies
- choose directions on the input hemisphere uniformly at random
- make an importance map for input hemisphere, reuse

$$
\rho(\mathbf{x}) \int K(\mathbf{x}, \mathbf{u})(\hat{B}(\mathbf{u})-E(\mathbf{u})) d \mathbf{u}
$$

