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• Assume we’re in a world of diffuse surfaces
• Rendering 
• cast eye rays
• evaluate radiosity at first hit
• average, stick into pixel

• Not practical --- we don’t know radiosity

• Model

Radiosity and diffuse interreflections



Interreflections are significant

From Koenderink slides on image texture and the flow of light



Radiometry

• Questions:
• how “bright” will surfaces be? 
• what is “brightness”?
• measuring light
• interactions between light and surfaces

• Core idea - think about light arriving at a surface
• Around any point is a hemisphere of directions
• Simplest problems can be dealt with by reasoning about 

this hemisphere



Interreflection model

B(x) = E(x) +
radiosity due to
incoming radiance
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For the moment, read this as 
incoming light

Integral over all incoming directions



Terminology

• Radiosity - 
• total power emitted by a surface, per unit area, irrespective of direction
• contains terms due to reflection and due to emitted light 
• eg diffuser box 
• appropriate unit for describing intensity of diffuse surfaces

• Exitance
• total internally generated power emitted by a surface, per unit area, 

irrespective of direction
• non-zero only for luminaires 
• things that make light internally
• appropriate unit for describing intensity of diffuse luminaires



Radiosity due to an area source

• Assume
• source has B=E (luminaire- makes light)
• receiver has E=0
• doesn’t make light
• Vis(x, u)=1 if x can see u
• 0 otherwise

• Derive later
• what do we do with it?

B(x) = ρ(x)
�

S

cos θi cos θs

πr2
V is(x, u)E(u)dAs



All diffuse surfaces are area sources!

• Receiver can’t tell whether light is created 
or reflected at source
• If receiver is luminaire (makes light), that 

just adds
• Diffuse interreflection equation
• vis(x, u)=1 if they can see each other, 0 otherwise
• Notice nasty property
• B (unknown) is inside the integral!
• Fredholm equation of the second kind

B(x) = E(x) + ρ(x)
�

S

cos θi cos θs

πr2
V is(x,u)B(u)dAs



Evaluating the radiosity

• cast eye rays
• evaluate radiosity at first hit
• average, stick into pixel

• Not practical --- we don’t know radiosity

• Model

B x( ) = E x( ) + ρd x( ) B u( ) cosθ i cosθ s

πr(x,u)2 Vis x,u( )dAu
all other
surfaces

∫



Diffuse-diffuse transfer

• Again, hard to render because
• many paths are important, even more are not
• most do not reach the light
• we don’t know how to find the important ones

Light

Focal point



Useful notational trick

• Write

• Think of 
• functions as very long vectors
• K(x, u) as a matrix
• write

ρ(x)
�

S

cos θi cos θs

πr2
V is(x,u)B(u)dus = ρ(x)

�

S
K(x,u)B(u)dus

ρ(x)
�

S
K(x,u)B(u)dus = ρKB



Core ideas: Neumann series

• We have

• Can write:  

• Which gives

B x( ) = E x( ) + ρd x( ) B u( ) cosθ i cosθ s

πr(x,u)2 Vis x,u( )dAu
all other
surfaces

∫

B = E + ρKB

Exitance
Source term

One bounce Two bounces

B = E + (ρK)E + (ρK)(ρK)E + (ρK)3E + . . .



The terms

Exitance
Source term

One bounce Two bounces

B = E + (ρK)E + (ρK)(ρK)E + (ρK)3E + ...

mostly zero

Can change fast - shadows, etc.

Changes much more slowly, because K smoothes

Changes even more slowly, because K smoothes

B = E + (ρK)E + (ρK)(ρK)E + (ρK)3E + . . .



• Notice:  

• Assume that I have a very rough estimate of B
• I could render this using

• This isn’t such a good idea, because our shadows will be mangled

Using an estimate

B = E + (ρK)B

B = E + (ρK)B̂



The right way

Exitance
Source term

mostly zero

Can change fast - shadows, etc.

One or more bounces

Changes much more slowly, because K smoothes,
so we should approximate this

B = E + (ρK)E + (ρK)(B̂ − E)



Computing the integrals

• Two terms
• source term
• we expect to need multiple samples, some 

large values, large changes over space
• large variance will be ugly - should 

compute this term carefully at each point 
to render

• indirect term
• this term should change slowly over 

space, and should be smaller in value
• large variance less ugly - we can use 

fewer samples and pool samples

ρ(x)
�

K(x,u)E(u)du

ρ(x)
�

K(x,u)(B̂(u)− E(u))du



• Recall definition:

• How to evaluate this integral at a point?

• obtain

• Form:  

• Similar to evaluating illumination from area source

Integrals with importance sampling

ρ(x)KF = ρ(x)
�

K(x,u)F (u)du

ui ∼ p(u)

1
N

N�

i=1

K(x,ui)F (ui)
p(ui)



Importance sampling

• What is a good p(u)?
• p(u) should be big when K(x, u) F(u) is big
• this helps to control variance
• known as importance sampling
• Significant considerations:
• fast variation in F(u)
• fast variation in K
• usually due to visibility

• How many samples?
• fixed number
• may be expensive, ineffective
• by estimate of variance
• this goes down as 1/N, which is very bad news



Computing the direct term

• We know where E is non-zero
• luminaires
• zero at most points

• Treat these as area sources
• ie samples randomly distributed across area
• number of samples prop to intensity, total energy
• or stratified sampling 
• use visibility considerations to choose which sources are sampled

ρ(x)
�

K(x,u)E(u)du



Computing the indirect term

• Small (ish)
• Varies relatively slowly across space
• Non-zero at most points
• Don’t really know where it will be large
• Strategies
• choose directions on the input hemisphere uniformly at random
• make an importance map for input hemisphere, reuse

ρ(x)
�

K(x,u)(B̂(u)− E(u))du


