Physical Rendering: Strategic Overview

D.A. Forsyth

Light paths

- Light starts at the luminaire, ends at the eye
 - Rendering involves accounting for these paths
 - pixel value= Sum over paths (light contributed by path)
 - When we ray trace, we are tracking a path that light followed
 - we could go forward or backward along the path
 - either way involves easy geometry we know how to do
 - Label the path with L (bounces) E
- Bounce labels are D (diffuse), S (specular/transmissive)
- Big distinction:
 - S we know the next dir, D we don't

Light paths

- Example paths
 - e.g. LDE
 - luminaire to diffuse surface to eye
 - already done these; trace eye ray then
 - shadow ray+dot product (point light source)
 - area source integral (area luminaire)
 - LDSE
 - luminaire to diffuse to specular to eye
 - already done these; trace eye ray, one specular/transmissive ray then
 - shadow ray+dot product (point light source)
 - area source integral (area luminaire)

Light paths

• Example paths:

- LDS*E
 - already done this, multiple specular/transmissive bounces
- LSDE
 - sketched this; fire light out of luminaire, stick it in a map, pick up later
- LDD+E
 - i.e. more than one diffuse bounce
 - have not yet talked about this, next topic
 - these paths can contribute a lot of light, but are hard to evaluate

Main points

- When a light path arrives at/leaves from S
 - we know where it's going/came from
- When a light path arrives at/leaves from D
 - we don't know where it's going/came from
- Rendering ALWAYS answers "how bright is this"

Brightness = Diffuse term + term from far end of specular+ term from far end of transmitted

Rendering strategy

Evaluate the far end of rays to give brightness answer

Figure from Ward et al, "A Ray-tracing solution for diffuse interreflection", 1988

Strategy

- Specular and transmitted terms are basically simple
 - from eye, follow the S, find what's at the far end
 - from luminaire, follow the S, leave a blob of light
- Diffuse term is not
 - Physical model of the diffuse term
 - Rendering strategy:
 - build rough approximation of LDD+E path contributions
 - exploit that to compute shading values at pixels
 - Three interlinked topics
 - physical model (straightforward)
 - what to do with approximation (fairly straightforward)
 - how to build (numerous options, can be quite confusing)