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How we got here

• We want to render diffuse interreflections
• strategy:  compute approximation B-hat, then gather

Exitance
Source term

mostly zero

Can change fast - shadows, etc.

One or more bounces

Changes much more slowly, because K smoothes,
so we should approximate this

B = E + (ρK)E + (ρK)(B̂ − E)



Gathering

• We gather radiosity from B-hat
• Here S is all the surfaces in the world

• Another integral
• but not a good idea to integrate over dAs
• too much area, too many samples
• instead, integrate over hemisphere

(ρK)(B̂ − E) = ρ(x)

�

S

cos θi cos θs
πr2

V is(x,u)(B̂(u)− E(u))dAs



• By analogy with angle (in radians)
• The solid angle subtended by a patch area dA is given by

Remember Solid Angle

€ 

dω =
dAcosϑ

r2



Changing variables

• Rather than integrate over all 
area, integrate over hemisphere
• equivalently, integrate over solid angle

cos θs
r2

dAs = dωs



Changing variables

• Start with:

• Substitute:

• Get:

ρ(x)

�

S

cos θi cos θs
πr2

V is(x,u)(B̂(u)− E(u))dAs

cos θs
r2

dAs = dωs

Incoming hemisphere

Value at far end of ray through angle

ρ(x)
1

π

�

Ω
cos θi(B̂(ω)− E(ω))dω



Evaluating integral

• Procedure
• Generate N uniform random samples on hemisphere
• procedure described on whiteboard
• Find B-hat-E at far end of each ray
• Average

• How big should N be?
• Variance
• estimate is a random variable, so must have variance
• small N implies high variance, fast
• large N implies low variance, slow
• Variance will look like noise
• but should be small, because the term is small
• suggests small N is OK



Gathering from B-hat - E

Luminaire

KE  rays  for  direct  term

rays  for  K(B-E)^

Eye Ray

B = E + (ρK)E + (ρK)(B̂ − E)



Alternative: B-hat via random paths

• Notice that B-hat is also an integral
• approximation to B

• Now from

• we expect

• so

• expand by substituting to get

• ie

• substitute from above to get

B = E + (ρK)B

B̂ = E + (ρK)B̂

B̂ − E = (ρK)B̂

B̂ = E + (ρK)(E + (ρK)B̂)

B̂ − E = (ρK)(E + (ρK)B̂)

B̂ − E = (ρK)E + (ρK)(B̂ − E)



Alternative

• We could evaluate B-hat - E recursively

B̂ − E = (ρK)E + (ρK)(B̂ − E)

Direct term Indirect term



Recursive evaluation

shade(x) = E(x) + ρ(x)direct(x) + RKBME(x)

Luminaire

KE  rays  for  direct  term

rays  for  K(B-E)^



Recursive evaluation: direct term

direct(x) =
�

l∈luminaires

directfromL(x, l)

directfromL(x, L)

generate N uniform random samples ui on luminaire L with area Al

return Al
N

�
i
cos θx cos θu

πr2 E(ui)

We did this when we discussed area luminaires - no big mystery here



Recursive evaluation: Indirect term

This form isn’t yet practical, because the recursion is infinite!

RKBME(x)

Generate M points pi uniformly at random on unit hemisphere at x
For each point pi, write ui for the first hit on the ray from x to pi
write cos θsi for the cosine at x of the i’th direction

return ρ(x)2π 1
π

1
M

�
i (ρ(ui)direct(ui) + RKBME(ui)) cos θsi



 B-hat via random paths becomes a tree

Luminaire

KE  rays  for  direct  term

rays  for  K(B-E)^

KE  rays  for  direct  term

rays  for  K(B-E)
^



 B-hat via random paths becomes a tree

Eye  Ray

Direct  term

Luminaire

Indirect  term
rays

Indirect  term
rays

And  so  on...



Recursive evaluation: Indirect term

Recursion no longer infinite, but estimate must be (very slightly) too small

RKBME(x, depth)

Generate M points pi uniformly at random on unit hemisphere at x
For each point pi, write ui for the first hit on the ray from x to pi
write cos θsi for the cosine at x of the i’th direction
if depth==0
return 0
else
return ρ(x)2π 1

π
1
M

�
i (ρ(ui)direct(ui) + RKBME(ui, depth− 1)) cos θsi



Recursive evaluation: Indirect term

Recursion no longer infinite, not as deep as previous,
 but estimate must still be (very slightly) too small

RKBME(x, ρacc)

Generate M points pi uniformly at random on unit hemisphere at x
For each point pi, write ui for the first hit on the ray from x to pi
write cos θsi for the cosine at x of the i’th direction
if ρacc < smallthresh
return 0
else
return ρ(x)2π 1

π
1
M

�
i (ρ(ui)direct(ui) + RKBME(ui, ρ(x) ∗ ρacc)) cos θsi



Russian roulette

• Consider a random process:
• with probability p, return S
• with probability 1-p, return 0

• Expected value:
• p*S

• We can use this to prune paths at random, mainly pruning 
when albedo is low



Russian roulette

RKBME(x)

Generate v uniform random variable, v ∈ [0, 1]

if v > ρ(x)
return 0
else

Generate M points pi uniformly at random on unit hemisphere at x
For each point pi, write ui for the first hit on the ray from x to pi
write cos θsi for the cosine at x of the i’th direction

return 2π 1
π

1
M

�
i (ρ(ui)direct(ui) + RKBME(ui)) cos θsi

Notice what’s happened to the albedo term.   When a path gets to low albedo surface, it 
has little chance of continuing.  This is unbiased!



Light path analysis

• We’ve now done LD*E
• russian roulette cleverly explores paths; if there’s lots of albedo, paths tend 

to be long; else short.
• russian roulette is a random process
• random choice of directions; random choice to prune
• unbiased
• Expected value is the right answer
• variance
• because it’s random
• looks like image noise
• seen this before in lenses, motion blur
• control by
• more rays (!)
• caching
• importance sampling (later)



Caching

Eye  Ray

Direct  term

Luminaire

Indirect  term
rays

Indirect  term
rays

And  so  on...

Imagine we’ve hit this point before;
why expand?



Caching
RKBME(x)

Generate v uniform random variable, v ∈ [0, 1]

if v > ρ(x)
return 0
else

Interrogate cache - do we have an RKBME value close to x?
if yes
return cache value
else

Generate M points pi uniformly at random on unit hemisphere at x
For each point pi, write ui for the first hit on the ray from x to pi
write cos θsi for the cosine at x of the i’th direction

return 2π 1
π

1
M

�
i (ρ(ui)direct(ui) + RKBME(ui)) cos θsi



Irradiance cache vs path tracing, from Pharr + Humphreys, for 
the same amount of cpu



Light path analysis

• Main strategy
• build and  evaluate light paths

• We can do other kinds of path like this, too
• requires extra radiometry



Ray tracing



add soft shadows



global illumination



Radiometry

• Questions:
• how “bright” will surfaces be? 
• what is “brightness”?
• measuring light
• interactions between light and surfaces

• Core idea - think about light arriving at a surface
• around any point is a hemisphere of directions
• Simplest problems can be dealt with by reasoning about 

this hemisphere



Lambert’s wall



More complex wall



More complex wall



• By analogy with angle (in radians)
• The solid angle subtended by a patch area dA is given by

• Another useful expression:

Solid Angle



Radiance

• Measure the “amount of light”  at a point, in a direction
• Property is:                                                                        

Radiant power per unit foreshortened area per unit 
solid angle
• Units:  watts per square meter per steradian  (wm-2sr-1)
• Usually written as: • Crucial property:                      

In a vacuum, radiance 
leaving p in the direction of q 

is the same as radiance 
arriving at q from p

– hence the units



Radiance is constant along straight lines 

• Power 1->2, leaving 1:

• Power 1->2, arriving at 2:



• How much light is arriving at a surface?
• Sensible unit is Irradiance
• Incident power per unit area not foreshortened
• This is a function of incoming angle.  
• A surface experiencing radiance L(x,θ,φ) coming in from 

dω experiences irradiance

Irradiance

• Crucial property:                          
Total power arriving at the 
surface is given by adding 

irradiance over all incoming 
angles  --- this is why it’s a 

natural unit



• Many effects when light strikes a surface -- could be:
• absorbed; transmitted. reflected; scattered

• Assume that
• surfaces don’t fluoresce
• surfaces don’t emit light (i.e. are cool)
• all the light leaving a point is due to that arriving at that point

• Can model this situation with the Bidirectional 
Reflectance Distribution Function (BRDF)
• the ratio of the radiance in the outgoing direction to the 

incident irradiance

Surfaces and the BRDF





BRDF

• Units:  inverse steradians  (sr-1)
• Symmetric in incoming and outgoing directions
• Radiance leaving in a particular direction:
• add contributions from every incoming direction



Suppressing Angles - Radiosity

• In many situations, we do not really need angle 
coordinates
• e.g. cotton cloth, where the reflected light is not dependent on angle

• Appropriate radiometric unit is radiosity
• total power leaving a point on the surface, per unit area on the surface 

(Wm-2)

• Radiosity from radiance?
• sum radiance leaving surface over all exit directions



Radiosity

• Important relationship:
• radiosity of a surface whose radiance is independent of angle (e.g. that 

cotton cloth)



• BRDF is a very general notion
• some surfaces need it (underside of a CD; tiger eye; etc)
• very hard to measure and very unstable
• for many surfaces, light leaving the surface is largely independent of exit 

angle (surface roughness is one source of this property)

• Directional hemispheric reflectance:
• the fraction of the incident irradiance in a given direction that is reflected 

by the surface (whatever the direction of reflection)
• unitless, range 0-1

Directional hemispheric reflectance







• For some surfaces, the DHR is independent of direction
• cotton cloth, carpets, matte paper, matte paints, etc.
• radiance leaving the surface is independent of angle
• Lambertian surfaces (same Lambert) or ideal diffuse surfaces
• Use radiosity as a unit to describe light leaving the surface
• DHR is often called diffuse reflectance, or albedo

•  for a Lambertian surface, BRDF is independent of angle, 
too.
• Useful fact:

Lambertian surfaces and albedo



Specular surfaces

• Another important class of surfaces is specular, or mirror-
like.
• radiation arriving along a direction leaves along the specular direction
• reflect about normal
• some fraction is absorbed, some reflected
• on real surfaces, energy usually goes into a lobe of directions
• can write a BRDF, but requires the use of funny functions



Phong’s model

• There are very few cases where the exact shape of the 
specular lobe matters.
• Typically:
• very, very small --- mirror
• small  -- blurry mirror
• bigger -- see only light sources as “specularities”
• very big -- faint specularities

• Phong’s model
• reflected energy falls off with



Lambertian + specular

• Widespread model
• all surfaces are Lambertian plus specular component

• Advantages
• easy to manipulate
• very often quite close true

• Disadvantages
• some surfaces are not
• e.g. underside of CD’s, feathers of many birds, blue spots on many 

marine crustaceans and fish,  most rough surfaces, oil films (skin!), wet 
surfaces

• Generally, very little advantage in modelling behaviour of light at a surface 
in more detail -- it is quite difficult to understand behaviour of L+S 
surfaces



Area sources

• Examples: diffuser boxes, white walls.
• The radiosity at a point due to an area source is obtained 

by adding up the contribution over the section of view 
hemisphere subtended by the source  
• change variables and add up over the source



Radiosity due to an area source

• rho is albedo
• E is exitance
• r(x, u) is distance between points
• u is a coordinate on the source


