Paths, diffuse interreflections, caching and radiometry

D.A. Forsyth

How we got here

- We want to render diffuse interreflections
- strategy: compute approximation B-hat, then gather

$$
B=E+(\rho \mathcal{K}) E+(\rho \mathcal{K})(\hat{B}-E)
$$

Exitance

Can change fast - shadows, etc.

Changes much more slowly, because K smoothes, so we should approximate this

Gathering

- We gather radiosity from B-hat
- Here S is all the surfaces in the world

$(\rho \mathcal{K})(\hat{B}-E)=\rho(\mathbf{x}) \int_{S} \frac{\cos \theta_{i} \cos \theta_{s}}{\pi r^{2}} \operatorname{Vis}(\mathbf{x}, \mathbf{u})(\hat{B}(\mathbf{u})-E(\mathbf{u})) d A_{s}$
- Another integral
- but not a good idea to integrate over dAs
- too much area, too many samples
- instead, integrate over hemisphere

Remember Solid Angle

- By analogy with angle (in radians)
- The solid angle subtended by a patch area dA is given by

$$
d \omega=\frac{d A \cos \vartheta}{r^{2}}
$$

Changing variables

- Rather than integrate over all area, integrate over hemisphere
- equivalently, integrate over solid angle

$$
\frac{\cos \theta_{s}}{r^{2}} d A_{s}=d \omega_{s}
$$

Changing variables

- Start with:

$$
\rho(\mathbf{x}) \int_{S} \frac{\cos \theta_{i} \cos \theta_{s}}{\pi r^{2}} \operatorname{Vis}(\mathbf{x}, \mathbf{u})(\hat{B}(\mathbf{u})-E(\mathbf{u})) d A_{s}
$$

- Substitute: $\frac{\cos \theta_{s}}{r^{2}} d A_{s}=d \omega_{s}$

Value at far end of ray through angle

- Get:

$$
\rho(\mathbf{x}) \frac{1}{\pi} \int_{\Omega} \cos \theta_{i}(\hat{B}(\omega)-E(\omega)) d \omega
$$

Incoming hemisphere

Evaluating integral

- Procedure
- Generate N uniform random samples on hemisphere
- procedure described on whiteboard
- Find B-hat-E at far end of each ray
- Average
- How big should N be?
- Variance
- estimate is a random variable, so must have variance
- small N implies high variance, fast
- large N implies low variance, slow
- Variance will look like noise
- but should be small, because the term is small
- suggests small N is OK

Gathering from B-hat - E

Alternative: B-hat via random paths

- Notice that B-hat is also an integral
- approximation to B
- Now from $B=E+(\rho \mathcal{K}) B$
- we expect $\hat{B}=E+(\rho \mathcal{K}) \hat{B}$
- so $\quad \hat{B}-E=(\rho \mathcal{K}) \hat{B}$
- expand by substituting to get

$$
\begin{aligned}
& \hat{B}=E+(\rho \mathcal{K})(E+(\rho \mathcal{K}) \hat{B}) \\
& \hat{B}-E=(\rho \mathcal{K})(E+(\rho \mathcal{K}) \hat{B})
\end{aligned}
$$

- ie
- substitute from above to get $\hat{B}-E=(\rho \mathcal{K}) E+(\rho \mathcal{K})(\hat{B}-E)$

Alternative

- We could evaluate B-hat - E recursively

$$
\hat{B}-E=\underset{\text { Direct term }}{(\rho \mathcal{K}) E+(\rho \mathcal{K})(\hat{B}-E)}
$$

Recursive evaluation

 shade $(x)=E(x)+\rho(x) \operatorname{direct}(x)+\operatorname{RKBME}(x)$

Recursive evaluation: direct term

$$
\operatorname{direct}(x)=\sum_{l \in \text { luminaires }} \operatorname{directfromL}(x, l)
$$
directfromL(x, L)
generate N uniform random samples u_{i} on luminaire L with area A_{l} return $\frac{A_{l}}{N} \sum_{i} \frac{\cos \theta_{x} \cos \theta_{u}}{\pi r^{2}} E\left(u_{i}\right)$

We did this when we discussed area luminaires - no big mystery here

Recursive evaluation: Indirect term

This form isn't yet practical, because the recursion is infinite!

RKBME(x)

Generate M points p_{i} uniformly at random on unit hemisphere at x For each point p_{i}, write u_{i} for the first hit on the ray from x to p_{i} write $\cos \theta_{s i}$ for the cosine at x of the i 'th direction
return $\rho(x) 2 \pi \frac{1}{\pi} \frac{1}{M} \sum_{i}\left(\rho\left(u_{i}\right) \operatorname{direct}\left(u_{i}\right)+\operatorname{RKBME}\left(u_{i}\right)\right) \cos \theta_{s i}$

B-hat via random paths becomes a tree

B-hat via random paths becomes a tree

Recursive evaluation: Indirect term

Recursion no longer infinite, but estimate must be (very slightly) too small

RKBME(x, depth)
Generate M points p_{i} uniformly at random on unit hemisphere at x For each point p_{i}, write u_{i} for the first hit on the ray from x to p_{i} write $\cos \theta_{s i}$ for the cosine at x of the i 'th direction
if depth $=0$
return 0
else
return $\rho(x) 2 \pi \frac{1}{\pi} \frac{1}{M} \sum_{i}\left(\rho\left(u_{i}\right) \operatorname{direct}\left(u_{i}\right)+\operatorname{RKBME}\left(u_{i}\right.\right.$, depth -1$\left.)\right) \cos \theta_{s i}$

Recursive evaluation: Indirect term

Recursion no longer infinite, not as deep as previous, but estimate must still be (very slightly) too small
$\operatorname{RKBME}\left(\mathrm{x}, \rho_{a c c}\right)$
Generate M points p_{i} uniformly at random on unit hemisphere at x For each point p_{i}, write u_{i} for the first hit on the ray from x to p_{i} write $\cos \theta_{s i}$ for the cosine at x of the i 'th direction
if $\rho_{a c c}<$ smallthresh
return 0
else
return $\rho(x) 2 \pi \frac{1}{\pi} \frac{1}{M} \sum_{i}\left(\rho\left(u_{i}\right) \operatorname{direct}\left(u_{i}\right)+\operatorname{RKBME}\left(u_{i}, \rho(x) * \rho_{a c c}\right)\right) \cos \theta_{s i}$

Russian roulette

- Consider a random process:
- with probability p, return S
- with probability 1-p, return 0
- Expected value:
- $p^{*} S$
- We can use this to prune paths at random, mainly pruning when albedo is low

Russian roulette

Notice what's happened to the albedo term. When a path gets to low albedo surface, it has little chance of continuing. This is unbiased!

RKBME(x)

Generate v uniform random variable, $v \in[0,1]$
if $v>\rho(x)$
return 0
else
Generate M points p_{i} uniformly at random on unit hemisphere at x For each point p_{i}, write u_{i} for the first hit on the ray from x to p_{i} write $\cos \theta_{s i}$ for the cosine at x of the i 'th direction
return $2 \pi \frac{1}{\pi} \frac{1}{M} \sum_{i}\left(\rho\left(u_{i}\right) \operatorname{direct}\left(u_{i}\right)+\operatorname{RKBME}\left(u_{i}\right)\right) \cos \theta_{s i}$

Light path analysis

- We've now done LD*E
- russian roulette cleverly explores paths; if there's lots of albedo, paths tend to be long; else short.
- russian roulette is a random process
- random choice of directions; random choice to prune
- unbiased
- Expected value is the right answer
- variance
- because it's random
- looks like image noise
- seen this before in lenses, motion blur
- control by
- more rays (!)
- caching
- importance sampling (later)

Caching

Caching

RKBME(x)

Generate v uniform random variable, $v \in[0,1]$
if $v>\rho(x)$
return 0
else
Interrogate cache - do we have an RKBME value close to x ?
if yes
return cache value
else
Generate M points p_{i} uniformly at random on unit hemisphere at x For each point p_{i}, write u_{i} for the first hit on the ray from x to p_{i} write $\cos \theta_{s i}$ for the cosine at x of the i 'th direction
return $2 \pi \frac{1}{\pi} \frac{1}{M} \sum_{i}\left(\rho\left(u_{i}\right) \operatorname{direct}\left(u_{i}\right)+\operatorname{RKBME}\left(u_{i}\right)\right) \cos \theta_{s i}$

Irradiance cache vs path tracing, from Pharr + Humphreys, for the same amount of cpu

Light path analysis

- Main strategy
- build and evaluate light paths
- We can do other kinds of path like this, too
- requires extra radiometry

Radiometry

- Questions:
- how "bright" will surfaces be?
- what is "brightness"?
- measuring light
- interactions between light and surfaces

- Core idea - think about light arriving at a surface
- around any point is a hemisphere of directions
- Simplest problems can be dealt with by reasoning about this hemisphere

Lambert's wall

More complex wall

More complex wall

Solid Angle

- By analogy with angle (in radians)
- The solid angle subtended by a patch area dA is given by

$$
d \omega=\frac{d A \cos \vartheta}{r^{2}}
$$

- Another useful expression:

$$
d \omega=\sin \vartheta(d \vartheta)(d \phi)
$$

Radiance

- Measure the "amount of light" at a point, in a direction
- Property is:

Radiant power per unit foreshortened area per unit solid angle

- Units: watts per square meter per steradian (wm-2sr-1)
- Usually written as:
- Crucial property:

In a vacuum, radiance

$$
L(\underline{x}, \vartheta, \varphi)
$$

is the same as radiance
arriving at q from p

- hence the units

Radiance is constant along straight lines

- Power 1->2, leaving 1:

$$
L\left(\underline{x}_{1}, \vartheta, \varphi\right)\left(d A_{1} \cos \vartheta_{1}\right)\left(\frac{d A_{2} \cos \vartheta_{2}}{r^{2}}\right)
$$

- Power $1->2$, arriving at 2 :

$$
L\left(\underline{x}_{2}, \vartheta, \varphi\right)\left(d A_{2} \cos \vartheta_{2}\right)\left(\frac{d A_{1} \cos \vartheta_{1}}{r^{2}}\right)
$$

Irradiance

- How much light is arriving at a surface?
- Sensible unit is Irradiance
$L(\underline{x}, \vartheta, \varphi) \cos \vartheta d \omega$
- Incident power per unit area not foreshortened
- This is a function of incoming angle.
- A surface experiencing radiance $\mathrm{L}(\mathrm{x}, \theta, \phi)$ coming in from $\mathrm{d} \omega$ experiences irradiance
- Crucial property:

$$
\int_{\Omega} L(\underline{x}, \vartheta, \varphi) \cos \vartheta \sin \vartheta d \vartheta d \varphi
$$

surface is given by adding irradiance over all incoming angles --- this is why it's a natural unit

Surfaces and the BRDF

- Many effects when light strikes a surface -- could be:
- absorbed; transmitted. reflected; scattered
- Assume that
- surfaces don't fluoresce
- surfaces don't emit light (i.e. are cool)
- all the light leaving a point is due to that arriving at that point
- Can model this situation with the Bidirectional Reflectance Distribution Function (BRDF)
- the ratio of the radiance in the outgoing direction to the incident irradiance

$$
\begin{aligned}
\rho_{b d}\left(\underline{x}, \vartheta_{o}, \varphi_{o}, \vartheta_{i}, \varphi_{i},\right)= & \\
& \frac{L_{o}\left(\underline{x}, \vartheta_{o}, \varphi_{o}\right)}{L_{i}\left(\underline{x}, \vartheta_{i}, \varphi_{i}\right) \cos \vartheta_{i} d \omega}
\end{aligned}
$$

BRDF

- Units: inverse steradians (sr-1)
- Symmetric in incoming and outgoing directions
- Radiance leaving in a particular direction:
- add contributions from every incoming direction

$$
\int \rho_{b d}\left(\underline{x}, \vartheta_{o}, \varphi_{o}, \vartheta_{i}, \varphi_{i}\right) L_{i}\left(\underline{x}, \vartheta_{i}, \varphi_{i}\right) \cos \vartheta_{i} d \omega_{i}
$$

Suppressing Angles - Radiosity

- In many situations, we do not really need angle coordinates
- e.g. cotton cloth, where the reflected light is not dependent on angle
- Appropriate radiometric unit is radiosity
- total power leaving a point on the surface, per unit area on the surface (Wm-2)
- Radiosity from radiance?
- sum radiance leaving surface over all exit directions

$$
B(\underline{x})=\int_{\Omega} L_{o}(\underline{x}, \vartheta, \varphi) \cos \vartheta d \omega
$$

Radiosity

- Important relationship:
- radiosity of a surface whose radiance is independent of angle (e.g. that cotton cloth)

$$
\begin{aligned}
B(\underline{x}) & =\int_{\Omega} L_{o}(\underline{x}, \vartheta, \varphi) \cos \vartheta d \omega \\
& =L_{o}(\underline{x}) \int_{\Omega} \cos \vartheta d \omega \\
& =L_{o}(\underline{x}) \int_{0}^{\pi / 2} \int_{0}^{2 \pi} \cos \vartheta \sin \vartheta d \varphi d \vartheta \\
& =\pi L_{o}(\underline{x})
\end{aligned}
$$

Directional hemispheric reflectance

- BRDF is a very general notion
- some surfaces need it (underside of a CD; tiger eye; etc)
- very hard to measure and very unstable
- for many surfaces, light leaving the surface is largely independent of exit angle (surface roughness is one source of this property)
- Directional hemispheric reflectance:
- the fraction of the incident irradiance in a given direction that is reflected by the surface (whatever the direction of reflection)
- unitless, range $0-1$

$$
\begin{aligned}
\rho_{d h}\left(\vartheta_{i}, \varphi_{i}\right) & =\frac{\int_{\Omega} L_{o}\left(\underline{x}, \vartheta_{o}, \varphi_{o}\right) \cos \vartheta_{o} d \omega_{o}}{L_{i}\left(\underline{x}, \vartheta_{i}, \varphi_{i}\right) \cos \vartheta_{i} d \omega_{i}} \\
& =\int_{\Omega} \rho_{b d}\left(\underline{x}, \vartheta_{o}, \varphi_{o}, \vartheta_{i}, \varphi_{i}\right) \cos \vartheta_{o} d \omega_{o}
\end{aligned}
$$

Lambertian surfaces and albedo

- For some surfaces, the DHR is independent of direction
- cotton cloth, carpets, matte paper, matte paints, etc.
- radiance leaving the surface is independent of angle
- Lambertian surfaces (same Lambert) or ideal diffuse surfaces
- Use radiosity as a unit to describe light leaving the surface
- DHR is often called diffuse reflectance, or albedo
- for a Lambertian surface, BRDF is independent of angle, too.
- Useful fact:

$$
\rho_{b r d f}=\frac{\rho_{d}}{\pi}
$$

Specular surfaces

- Another important class of surfaces is specular, or mirrorlike.
- radiation arriving along a direction leaves along the specular direction
- reflect about normal
- some fraction is absorbed, some reflected
- on real surfaces, energy usually goes into a lobe of directions
- can write a BRDF, but requires the use of funny functions

from

Phong's model

- There are very few cases where the exact shape of the specular lobe matters.
- Typically:
- very, very small --- mirror
- small -- blurry mirror
- bigger -- see only light sources as "specularities"
- very big -- faint specularities
- Phong's model
- reflected energy falls off with

Lambertian + specular

- Widespread model
- all surfaces are Lambertian plus specular component
- Advantages
- easy to manipulate
- very often quite close true
- Disadvantages
- some surfaces are not
- e.g. underside of CD's, feathers of many birds, blue spots on many marine crustaceans and fish, most rough surfaces, oil films (skin!), wet surfaces
- Generally, very little advantage in modelling behaviour of light at a surface in more detail -- it is quite difficult to understand behaviour of $\mathrm{L}+\mathrm{S}$ surfaces

Area sources

- Examples: diffuser boxes, white walls.
- The radiosity at a point due to an area source is obtained by adding up the contribution over the section of view hemisphere subtended by the source
- change variables and add up over the source

Radiosity due to an area source

- rho is albedo
- E is exitance
- $r(x, u)$ is distance between points
- u is a coordinate on the source

$$
\begin{aligned}
B(x) & =\rho_{d}(x) \int_{\Omega} L_{i}(x, u \rightarrow x) \cos \theta_{i} d \omega \\
& =\rho_{d}(x) \int_{\Omega} L_{e}(x, u \rightarrow x) \cos \theta_{i} d \omega \\
& =\rho_{d}(x) \int_{\Omega}\left(\frac{E(u)}{\pi}\right) \cos \theta_{i} d \omega
\end{aligned}
$$

$$
=\rho_{d}(x) \int_{\text {sourree }}\left(\frac{E(u)}{\pi}\right) \cos \theta_{i}\left(\cos \theta_{s} \frac{d A_{u}}{r(x, u)^{2}}\right)
$$

$$
=\rho_{d}(x) \int_{\text {suurree }} E\left(u \frac{\cos \theta_{i} \cos \theta_{s}}{\pi r(x, u)^{2}} d A_{u}\right.
$$

