Radiosity estimates via finite elements

D.A. Forsyth
after slides by John Hart
In a world of diffuse surfaces ...

• Recall
 • radiosity is radiated power per unit area, independent of direction
 • we obtained:

\[
B(x) = E(x) + \rho(x) \int_S \frac{\cos \theta_i \cos \theta_s}{\pi r^2} \text{Vis}(x, u) B(u) dA_s
\]

• which we wrote as:

\[
B(x) - E(x) - \rho(x) \int K(x, u) B(u) dA_u = 0
\]
Radiosity estimate via finite elements

• Divide domain into patches
• Radiosity will be constant on each patch
 • patch basis function, or element
 \[\phi_i(x) = \begin{cases}
 1 & \text{if } x \text{ in patch } i \\
 0 & \text{otherwise}
 \end{cases} \]

• Now write
 • \(B_i \) for radiosity at patch \(i \)
 • \(E_i \) for exitance at patch \(i \)
 • Substitute into eqn:
\[\begin{align*}
B(x) - E(x) - \rho(x) \int K(x, u) B(u) dA_u &= 0 \\
\text{Becomes} \\
\left(\sum_i B_i \phi_i(x) \right) - \left(\sum_i E_i \phi_i(x) \right) - \left(\rho(x) \int K(x, u) \left(\sum_i B_i \phi_i(u) \right) dA_u \right) &= R(x)
\end{align*} \]

This should be “like zero”
Obtaining an estimate: Finite elements

• But in what sense is it zero?
 • Galerkin method

\[\int R(x) \phi_k(x) dA_x = 0 \forall k \]

• Apply to:

\[\left(\sum_i B_i \phi_i(x) \right) - \left(\sum_i E_i \phi_i(x) \right) - \left(\rho(x) \int K(x, u) \left(\sum_i B_i \phi_i(u) \right) dA_u \right) = R(x) \]

• And get

\[B_k A_k - E_k A_k - \sum_j \left(\int_{\text{patch } k} \rho(x) \int_{\text{patch } j} K(x, u) dudx \right) B_j = 0 \]
Finite Element Radiosity Equation

- Start with:

\[B_k A_k = E_k A_k + \sum_j \left(\int_{\text{patch } k} \rho(x) \int_{\text{patch } j} K(x, u) du dx \right) B_j \]

- Divide through by \(A_k \), assume constant albedo patches, get

\[B_k = E_k + \sum_j \rho_k F_{jk} B_j \]

- Where geometric effects are concentrated in the form factor

\[F_{jk} = \frac{1}{A_k} \int_{\text{patch } k} \int_{\text{patch } j} K(x, u) du dx \]
Finite Element Radiosity

- This is a linear system

\[B_k = E_k + \sum_j \rho_{kj} B_j \]

- fold in albedo, write

\[B_k = E_k + \sum_j \Gamma_{kj} B_j \]

- or in terms of matrices and vectors

\[\mathbf{B} = \mathbf{E} + \Gamma \mathbf{B} \]

- **BUT YOU SHOULD NEVER DO:**
 - B might have 10^6 elements or more!

\[\mathbf{B} = (\mathcal{I} - \Gamma)^{-1} \mathbf{E} \]
Form factors

- Recall:
 \[F_{jk} = \frac{1}{A_k} \int_{\text{patch } k} \int_{\text{patch } j} K(x, u) du dx \]

- if patches are all flat, then:
 \[F_{ii} = 0 \]

- if i can’t see j at all, then:
 \[F_{ij} = 0 \]

- reciprocity:
 \[A_k F_{jk} = A_j F_{kj} \]
Form Factors

• Power leaving patch k: $B_k A_k$

• Power leaving patch k for patch j:

$$ \int_{\text{patch } k} \int_{\text{patch } j} K(x, u) B_k \, du \, dx $$

• Interpretation:
 • F_{jk} is percentage of power leaving k that arrives at j

$$ F_{jk} = \frac{1}{A_k} \int_{\text{patch } k} \int_{\text{patch } j} K(x, u) \, du \, dx $$

• this gives:

$$ \sum_j F_{jk} = 1 $$
Computing form factors

- Nusselt’s analogy

\[
F_{ij} = \frac{\text{proj}_D(\text{proj}_\Omega(A_j))}{\text{Area}(D)}
\]
The Hemicube

- Render onto faces of cube on receiver

\[
\Delta F_{dAiAj} = \frac{\cos \phi_i \cos \phi_j}{\pi r^2} \Delta A
\]
Random samples

- with N uniform samples on patches j and k

\[A_j A_k F_{jk} \approx \frac{1}{N} \sum \frac{\cos \theta_i \cos \theta_j \text{Vis}(i, j)}{\pi r^2} \]
Finite Element Radiosity

- This is a linear system
 \[B_k = E_k + \sum_j \rho_k F_{jk} B_j \]

- Fold in albedo, write
 \[B_k = E_k + \sum_j \Gamma_{kj} B_j \]

- Or in terms of matrices and vectors
 \[\mathbf{B} = \mathbf{E} + \Gamma \mathbf{B} \]

- **BUT YOU SHOULD NEVER DO:**
 - \(\mathbf{B} \) might have \(10^6 \) elements or more!
 \[\mathbf{B} = (\mathcal{I} - \Gamma)^{-1} \mathbf{E} \]
Solving the radiosity system: Gathering

- Neumann series (again!) \[B = E + \Gamma E + \Gamma^2 E + \Gamma^3 E + \ldots \]

- Easy iteration

\[B^{(0)} = E \]

\[B^{(n+1)} = E + \Gamma B^{(n)} \]

Not a good idea in this form, because we must evaluate the whole of Gamma for EACH iteration; Gamma might be millions by millions
Gathering with iterative methods

- Linear system \(Ax=b \)

- Jacobi iteration
 - reestimate each \(x \)

- Gauss-Seidel
 - reuse new estimates

\[
\sum_j a_{ij} x_j = b_i
\]

\[
x^{(n+1)}_j = \frac{1}{a_{jj}} \left(b_i - \sum_{l \neq j} a_{il} x^{(n)}_l \right)
\]

\[
x^{(n+1)}_j = \frac{1}{a_{jj}} \left(b_i - \sum_{l<j} a_{il} x^{(n+1)}_l - \sum_{l>j} a_{il} x^{(n)}_l \right)
\]
Southwell iteration: Progressive radiosity

• Gauss-Seidel, Jacobi, Neumann require us to evaluate whole kernel at each iteration
 • this is vilely expensive $10^6 \times 10^6$ matrix?
 • it’s also irrational
 • in G-S, Jacobi, for one pass through the variables,
 • we gather at each patch, from each patch
 • but some patches are not significant sources
 • we should like to gather only from bright patches
 • or rather, patches should “shoot”

• This is Southwell iteration
Southwell iteration: update x

- Define a residual:
 \[R = (b - Ax) \]

 - whose elements are
 \[r_i^{(n)} = b_i - \sum_j a_{ij} x_j^{(n)} \]

- now choose the largest \(r_i \)

 - and adjust the corresponding \(x \) component to make it zero

\[
x_l^{(n+1)} = \begin{cases}
 x_l^{(n)} & \text{if } l \neq i \\
 \frac{1}{a_{ii}} \left(r_i^{(n)} + a_{ii} x_i^{(n)} \right) & \text{if } l = i
\end{cases}
\]
Southwell iteration: update r

- Update the residual by adding old x col, subtracting new

$$r_l^{(n+1)} = r_l^{(n)} + a_{li}(x_i^{(n)} - x_i^{(n+1)})$$

- but this takes an easy form

$$r_l^{(n+1)} = r_l^{(n)} - \frac{a_{li}}{a_{ii}} r_i^{(n)}$$

- Notice we can update variables in order of large residual, using only one col of kernel to do so
 - this converges (non-trivial) rather fast (non-trivial)
 - to get a solution, we need evaluate only a small proportion of the kernel (non-trivial)
Applying Southwell iteration to radiosity

- Our linear system is:
 \[(I - \Gamma)B = E\]

- And so we can write the residual as:
 \[r^{(n)} = E - B^{(n)} + \Gamma B^{(n)}\]

- Interpretation:
 - update B at i’th entry
 - at every other entry, we add energy shot from this update to that location
 - therefore residual is energy received, but not yet shot
 - which is zero, eventually
Applying Southwell iteration to radiosity

• Introduce a new variable:

\[N^{(n)} = B^{(n)} + r^{(n)} \]

• Notice
 • when iteration converges, N=B
 • N is: current estimate of radiosity+unshot radiosity
 • so N is a better rendering estimate than B

• N is easy to update
 • need only a column of matrix
 • use equations on following page
 • small r=small N-B
Applying Southwell iteration to radiosity

\[\Delta B = \frac{r_i^{(n)}}{(1 - \Gamma_{ii})} \]

\[B_j^{(n+1)} = \begin{cases}
B_j^{(n)} + \Delta B & \text{if } j = i \\
B_j^{(n)} & \text{if } j \neq i
\end{cases} \]

\[r_j^{(n+1)} = \begin{cases}
0 & \text{if } j = 1 \\
r_j^{(n)} - \Gamma_{ji} \Delta B & \text{otherwise}
\end{cases} \]

\[N_j^{(n+1)} = \begin{cases}
B_j^{(n)} + \Delta B & \text{if } j = 1 \\
B_j^{(n)} + r_j^{(n)} - \Gamma_{ji} \Delta B & \text{otherwise}
\end{cases} \]
Applying Southwell iteration to radiosity

\[\Delta B = \frac{N_i^{(n)} - B_i^{(n)}}{1 - \Gamma_{ii}} \]

\[B_j^{(n+1)} = \begin{cases}
B_j^{(n)} + \Delta B & \text{if } j = i \\
B_j^{(n)} & \text{if } j \neq i
\end{cases} \]

\[N_j^{(n+1)} = \begin{cases}
B_j^{(n)} + \Delta B & \text{if } j = 1 \\
N_j^{(n)} - \Gamma_{ji} \Delta B & \text{otherwise}
\end{cases} \]

And check N-B rather than r to choose i!
From Cohen, SIGGRAPH 88
Hierarchical radiosity

- Radiosity similar to n-body problems
 - gathering can be grouped
- Recall iteration
 \[B^{(0)} = E \]
 \[B^{(n+1)} = E + \Gamma B^{(n)} \]

- Can we make matrix multiplication more efficient?
 - Gamma “gathers” old radiosity solution to each patch
 - But distant patches contribute a near constant value
 - so when we gather from distant patches, we should use a big receiver
Alternative meshes

Gathering from distant patch in a corner

Gathering from nearby patch in a corner
A mesh hierarchy

- Represent patch with big AND small elements
 - big elements gather from distant
 - small elements gather from nearby
 - how do we know element is small enough
 - check size
 - check FF
 - check radiosity*FF

- Rendering
 - we need to know the radiosity at a point
 - walk the point down hierarchy
 - radiosity is radiosity of smallest element containing point
A mesh hierarchy

- Recall
 - radiosity is power /unit area

- Procedure
 - build initial mesh
 - until (no fixing)
 - until (converged)
 - compute a term in neumann series by
 - elements gather radiosity
 - distribute across the hierarchy
 - check whether mesh is fine enough
This is radiosity we have gathered, but haven’t accounted for yet.

This is the radiosity of the element.

```c
struct Quadnode {
    float \( B_g \); /* gathering radiosity */
    float \( B_s \); /* shooting radiosity */
    float \( E \); /* emission */
    float area;
    float \( \rho \);
    struct Quadnode** children; /* pointer to list of four children */
    struct Linknode* \( L \); /* first gathering link of node */
};
```

```c
struct Linknode {
    struct Quadnode* q; /* gathering node */
    struct Quadnode* p; /* shooting node */
    float \( F_{qp} \); /* form factor from \( q \) to \( p \) */
    struct Linknode* next; /* next gathering link of node \( q \) */
};
```

Figure 7.7: Quadnode and Linknode data structures.
HierarchicalRad(float BF_ε)
{
 Quadnode *p, *q;
 Link *L;
 int $Done$ = FALSE;
 for (all surfaces p) $p \rightarrow B_s = p \rightarrow E$;
 for (each pair of surfaces p, q)
 Refine(p, q, BF_ε);
 Make the mesh hierarchy
 while (not $Done$) {
 $Done$ = TRUE;
 SolveSystem(); /* as in Figure 7.9 */ Solve using mesh hierarchy
 for (all links L)
 /* RefineLink returns FALSE if any subdivision occurs */
 if (RefineLink(L, BF_ε) == FALSE)
 $Done$ = FALSE;
 If there is evidence this hierarchy is not fine enough
 somewhere, refine and go again
 }
}
Refine(Quadnode *p, Quadnode *q, float F_ϵ)
{
 Quadnode which, r;
 if (Oracle1(p, q, F_ϵ))
 Link(p, q);
 else {
 which = Subdiv(p, q);
 if (which == q)
 for (each child node r of q) Refine(p, r, F_ϵ);
 else if (which == p)
 for (each child node r of p) Refine(r, q, F_ϵ);
 else
 Link(p, q);
 }
}

Check which side should be split for example, split larger area
Compute the form factor for p, q by casting random rays (as above) then put it in the appropriate spot in datastructures

Figure 7.8: Refine pseudocode.
SolveSystem()
{
 Until Converged {
 for (all surfaces p) GatherRad(p);
 for (all surfaces p) PushPullRad(p, 0.0);
 }
}

Gather radiosity across link
Adjust values in hierarchy so they’re consistent

Figure 7.9: SolveSystem pseudocode.
Gathering radiosity
Gathering radiosity
Gathering radiosity
GatherRad(Quadnode *p)
{
 Quadnode *q; Link *L;
 p->B_g = 0;
 for (each gathering link L of p) /* gather energy across link */
 {
 p->B_g += p->ρ * L->F_{pq} * L->q->B_s ;
 }
 for each child node r of p
 GatherRad(r);
}

Notice that we gather from B_s into B_g

Figure 7.10: GatherRad pseudocode.
Radiosity is power/unit area so parent adds to children, children add area weighted sum to parent

```
PushPullRad( Quadnode *p, float B_down)
{
    float B_up, B_tmp;
    if (p->children == NULL) /* p is a leaf */
        B_up = p->E + p->B_g + B_down;
    else
    {
        B_up = 0;
        for (each child node r of p) children add area weighted sum to parent
        {
            B_tmp = PushPullRad(r, p->B_g + B_down);
            B_up += B_tmp * r->area / p->area
        }
    }
    p->B_s = B_up;
    return B_up;
}
```

Figure 7.11: PushPullRad pseudocode.
float Oracle1(Quadnode *p, Quadnode *q, float F_ϵ)
{
 if ($p\rightarrow area < A_\epsilon$ and $q\rightarrow area < A_\epsilon$)
 return(FALSE);
 if (EstimateFormFactor(p, q) < F_ϵ)
 return(FALSE);
 else
 return(TRUE);
}

Figure 7.12: Oracle1 pseudocode.
int RefineLink(Quadnode* L, float BF_e)
{
 int no_subdivision = TRUE;
 Quadnode* p = L->p; /* shooter */
 Quadnode* q = L->q; /* receiver */

 if (Oracle2(L, BF_e)) {
 no_subdivision = FALSE;
 which = Subdiv(p, q);
 DeleteLink(L);
 if (which == q)
 for (each child node r of q) Link(p, r);
 else
 for (each child node r of p) Link(r, q);
 }
 return(no_subdivision);
}

Figure 7.15: RefineLink pseudocode.
float Oracle2(Linknode *L, float BF_ε)
{
 Quadnode* p = L→p ; /* shooter */
 Quadnode* q = L→q ; /* receiver */
 if (p→area < A_ε and q→area < A_ε)
 return(FALSE);
 if (p→B_s == 0.0)
 return(FALSE);
 if((p→B_s * p→Area * L→F_pq) < BF_ε)
 return(FALSE);
 else return(TRUE);
}
BIF links, from Hanrahan et al, 91