Path tracing everything

D.A. Forsyth

The Rendering Equation-1

Angle between normal and incoming direction

$$L_{o}(\mathbf{x},\omega_{o}) = L_{e}(\mathbf{x},\omega_{o}) + \int_{\Omega} \rho_{bd}(\mathbf{x},\omega_{o},\omega_{i})L_{i}(\mathbf{x},\omega_{i})\cos\theta_{i}d\omega_{i}$$

$$\begin{vmatrix} & & & \\$$

Average over hemisphere

Radiance emitted from surface at that point in that direction

Radiance leaving a point in a direction

The Rendering Equation - II

- This balance works for
 - each wavelength,
 - at any time, so
- So

$$L_{o}(\mathbf{x}, \omega_{o}, \lambda, t) = L_{e}(\mathbf{x}, \omega_{o}, \lambda, t) + \int_{\Omega} \rho_{bd}(\mathbf{x}, \omega_{o}, \omega_{i}, \lambda, t) L_{i}(\mathbf{x}, \omega_{i}, \lambda, t) \cos \theta_{i} d\omega_{i}$$

Detectors respond to irradiance

• Report

 $\int_{D} \int_{\Omega} \int_{\Gamma} \int_{T} \sigma(\mathbf{x}, \lambda) L(\mathbf{x}, \omega, \lambda, t) \cos \theta d\mathbf{x} d\omega d\lambda dt$

- sigma is sensitivity to wavelength
- typically:
 - shutter is open for short time (T)
 - particular detector is tiny
 - so integral over D isn't significant
 - Omega is set of directions through lens
 - usually close to normal to device, so cos theta doesn't vary much

Strategy: evaluate this integral

- At detector, average many samples of incoming radiance
 - at different times, directions, wavelengths, perhaps locations
 - value? rendering equation
- Evaluating the rendering equation
 - at each point, compute
 - L_e (usually zero)
 - Integral
 - fire off some sample rays, evaluate at the far end
 - very like diffuse path tracing
 - improvements
 - russian roulette (seen this)
 - importance sampling

Importance sampling - 1

- We have N samples x_i from probability distribution p(x)
- Then

$$\frac{1}{N}\sum_{i}f(x_{i}) \to \int f(x)p(x)dx$$

- Generally, we've assumed p is uniform
 - not a great idea what if f is large in some places, small in others?
 - variance in the estimate
 - we can shape p to get a better estimate of the integral

Importance sampling - 2

• As long as p(x) is non-zero when f(x) is non-zero

$$\frac{1}{N}\sum_{i}\frac{f(x_i)}{p(x_i)} \to \int f(x)dx$$

• We could use p(x) to improve our estimate of integral

Path tracing

 $\begin{aligned} &L(\mathbf{x},\mathbf{v},\lambda,t)\\ \mathbf{u} \to \text{first hit along ray from xin direction } \mathbf{v} \end{aligned}$

```
compute \alpha (which might be a function of BRDF)
compute r uniform in range [0-1]
```

if $r < \alpha$ return $L_e(\mathbf{u}, -\mathbf{v}, \lambda, t)$ else choose N directions \mathbf{w}_i independently, at random, from distribution $P(\omega)$ on hemisphere.

return
$$L_e(\mathbf{u}, -\mathbf{v}, \lambda, t) + \frac{1}{\alpha} \frac{1}{N} \sum_i \left(\frac{\rho_{bd}(\mathbf{u}, \mathbf{v}, \mathbf{w}_i, \lambda, t) L(\mathbf{u}, \mathbf{w}_i, \lambda, t) \cos \theta_i}{P(\mathbf{w}_i)} \right)$$

To avoid variance problems, choose good P for surfaces with any diffuse component, P should have strong bias to light for specular surfaces, P should heavily emphasize the specular direction

Example pathtracer

http://www.kevinbeason.com/smallpt/

Details

Variance problems

- Paths may not find the light often
 - this could be fixed by clever choice of P to heavily emphasize directions toward the source
- Caustics will be poorly rendered, because the path to the source is obscure

Bidirectional path tracing

- Start paths at both eye and light and join them
- Notice:
 - a pair of eye-light paths generates many possible transfer paths
 - we can use each of these, if we compute weights correctly to get integral estimate right

Figure from "Bidirectional path tracing." Lafortune and Willems, 1993

From the eye

From the source

Bidirectional

Figure from Dutre, Bekaert, Bala 03; rendered by Suykens-De Laet

Photon maps

- Drop the requirement of an unbiased estimate of illumination
 - accept some bias for better variance properties
- Propagate photons from source, cache when they arrive at surfaces
- Interpolate illumination value by averaging over k-nearest neighbours
- Caustic variance
 - use two classes of photon: sample specular, refractive directions separately
- How many photons?
 - keep trying till it looks good

Photon propagation

- Photons carry Power
 - scale photons from source by number emitted
- reflected
 - diffuse
 - store in map when it arrives, propagate
 - prob proportional to cos theta
 - power scaled by albedo
 - or use russian roulette
 - specular
 - do not store in map, propagate
 - along specular direction
 - power scaled by reflectivity
 - or use russian roulette
 - arbitrary BRDF
 - inportance sample outgoing direction

Photon propagation

- When a photon arrives at complex surface, multiple photons could be generated
 - eg specular + diffuse
 - russian roulette to decide whether
 - specular
 - reflected/absorbed
 - diffuse
 - reflected/absorbed
- Photons are stored at diffuse (non-specular!) surfaces only
- Stored as:
 - Power, Location, Normal

Photon storage and querying

- Store in k-d tree
 - to look up r closest photons
 - tree represents free space close to surfaces

Evaluating Radiance

- Reflected radiance is: $L_r(\mathbf{x}, \omega) = \int_{\Omega} \rho_{bd}(\omega, \omega_i) L_i(\mathbf{x}, \omega_i) \cos \theta d\omega_i$ Each photon carries known power, in known direction
- - assume the relevant photons all arrive at x
 - each contributes radiance (power/dA)
 - assume surface is flat around x, build a circle
 - photons in this circle contribute
 - area is known

$$L_r(\mathbf{x}, \omega) = \frac{1}{\pi r^2} \sum \rho_{bd}(\omega, \omega_j) P_j(x, \omega_j)$$

Figure from Jensen's book

Figure from Jensen's book

A two pass renderer

• Propagate photons

- two classes
 - caustic photons toward specular/glossy, refractive objects
 - large numbers
 - caustic map
 - global illumination photons toward diffuse objects
 - small numbers
- Gather
 - render using
 - direct term by area source sampling
 - specular term by ray-tracing
 - caustic term by direct query to photon map
 - global illumination term by gathering the photon map