Paths, caching and radiometry

D.A. Forsyth

Light paths

- Rendering studies paths from light to eye
 - classify these by type of bounce (D diffuse; S specular/transmissive)
 - different strategies can render different paths
 - Ray tracing
 - LDS*E
 - Finite element radiosity
 - LD*E
 - with some extra work we haven't discussed, some BUT NOT ALL cases of
 - L(D|S)*DE
 - Gather applied to a radiosity solution
 - LD*S*E
 - But there are many more paths
 - model explicitly

Path tracing

- Paths start at eye
 - At diffuse surface, choose ongoing direction uniformly at random across hemisphere
 - Concentrate on diffuse surfaces for the moment
- Value of pixel
 - average of path values leaving pixel
 - value of path
 - accumulated values of reflectance along path times exitance at end
- where does a path stop?
 - when albedo is zero (many luminaires)

Issues

• Severe variance problems as described

- or very very slow for nice solutions
- Problem:
 - many low value paths wandering around space looking for a luminaire
 - at one pixel, we may end up sampling only low value paths
 - speckles, etc.
 - Strategy:
 - summarize paths with FE method (as above)
 - or do little work on low value paths if possible.
 - or cache path results

Russian roulette

- Prune low weight paths
 - when a path hits a low albedo surface, its value is likely to be small

 $\frac{1}{\rho}$

- idea:
 - prune with probability (1ρ)
 - if it survives, then weight path by
 - expected value is the same
- Advantages:
 - now don't need to accumulate albedo!
 - auto-pruning by accumulated albedo

Path tracing

• Path tracing

- Path starts at eye
- At a diffuse surface with albedo ρ , path is
 - continued with probability ρ
 - absorbed with probability 1- ρ
- Value of path
 - E(x) if it arrives at luminaire
 - 0 otherwise
- Direction along which path continues is uniform over exit hemisphere

This is a diffuse surface formulation.

Irradiance cache vs path tracing, from Pharr + Humphreys

Recall gathering

Figure 1: The four steps of ray tracing.

Figure from Ward et al, "A Ray-tracing solution for diffuse interreflection", 1988

We need to be able to evaluate the far end of each of these rays

Figure from Dutre, Bekaert, Bala 03; rendered by Suykens-De Laet

Caching

- Recall rendering strategy
 - compute approximate radiosity
 - gather it
- Currently, with progressive/hierarchical radiosity
- Alternative:
 - compute by gathering at the far end of the ray
 - unattractive, because we will get a very (infinitely) deep tree
 - compute by interrogating a cache; if there's nothing nearby, gather
 - but what do we put in the cache?
 - a measure of incoming light
 - irradiance (rather than radiosity)

- Questions:
 - how "bright" will surfaces be?
 - what is "brightness"?
 - measuring light
 - interactions between light and surfaces
- Core idea think about light arriving at a surface
- around any point is a hemisphere of directions
- Simplest problems can be dealt with by reasoning about this hemisphere

More complex wall

Solid Angle

- By analogy with angle (in radians)
- The solid angle subtended by a patch area dA is given by

Radiance

- Measure the "amount of light" at a point, in a direction
- Property is:
 Radiant power per unit foreshortened area per unit solid angle
- Units: watts per square meter per steradian (wm-2sr-1)
- Usually written as:

$$L(\underline{x},\vartheta,\varphi)$$

• Crucial property: In a vacuum, radiance leaving p in the direction of q is the same as radiance arriving at q from p – hence the units

Radiance is constant along straight lines

• Power 1->2, leaving 1:

$$L(\underline{x}_1,\vartheta,\varphi)(dA_1\cos\vartheta_1)\left(\frac{dA_2\cos\vartheta_2}{r^2}\right)$$

• Power 1->2, arriving at 2:

$$L(\underline{x}_2,\vartheta,\varphi)(dA_2\cos\vartheta_2)\left(\frac{dA_1\cos\vartheta_1}{r^2}\right)$$

Irradiance

- How much light is arriving at a surface?
- Sensible unit is Irradiance

 $L(\underline{x},\vartheta,\varphi)\cos\vartheta d\omega$

- Incident power per unit area not foreshortened
- This is a function of incoming angle.
- A surface experiencing radiance L(x,θ,φ) coming in from dω experiences irradiance

 $\int_{\Omega} L(\underline{x}, \vartheta, \varphi) \cos \vartheta \sin \vartheta d\vartheta d\varphi$

• Crucial property: Total power arriving at the surface is given by adding irradiance over all incoming angles --- this is why it's a natural unit

Surfaces and the BRDF

- Many effects when light strikes a surface -- could be:
 - absorbed; transmitted. reflected; scattered
- Assume that
 - surfaces don't fluoresce
 - surfaces don't emit light (i.e. are cool)
 - all the light leaving a point is due to that arriving at that point
- Can model this situation with the Bidirectional Reflectance Distribution Function (BRDF)
- the ratio of the radiance in the outgoing direction to the incident irradiance $\rho_{bd}(\underline{x}, \vartheta_o, \varphi_o, \vartheta_i, \varphi_i) =$

$$(\underline{x}, \vartheta_o, \varphi_o, \vartheta_i, \varphi_i) = \frac{L_o(\underline{x}, \vartheta_o, \varphi_o)}{L_i(\underline{x}, \vartheta_i, \varphi_i) \cos \vartheta_i d\omega}$$

BRDF

- Units: inverse steradians (sr-1)
- Symmetric in incoming and outgoing directions
- Radiance leaving in a particular direction:
 - add contributions from every incoming direction

$$\int_{\Omega} \rho_{bd}(\underline{x}, \vartheta_o, \varphi_o, \vartheta_i, \varphi_i) L_i(\underline{x}, \vartheta_i, \varphi_i) \cos \vartheta_i d\omega_i$$

Suppressing Angles - Radiosity

- In many situations, we do not really need angle coordinates
 - e.g. cotton cloth, where the reflected light is not dependent on angle
- Appropriate radiometric unit is radiosity
 - total power leaving a point on the surface, per unit area on the surface (Wm-2)
- Radiosity from radiance?
 - sum radiance leaving surface over all exit directions

$$B(\underline{x}) = \int_{\Omega} L_o(\underline{x}, \vartheta, \varphi) \cos \vartheta d\omega$$

Radiosity

• Important relationship:

• radiosity of a surface whose radiance is independent of angle (e.g. that cotton cloth)

$$B(\underline{x}) = \int_{\Omega} L_o(\underline{x}, \vartheta, \varphi) \cos \vartheta d\omega$$

= $L_o(\underline{x}) \int_{\Omega} \cos \vartheta d\omega$
= $L_o(\underline{x}) \int_{0}^{\pi/22\pi} \int_{0}^{\pi/22\pi} \cos \vartheta \sin \vartheta d\varphi d\vartheta$
= $\pi L_o(\underline{x})$

Directional hemispheric reflectance

• BRDF is a very general notion

- some surfaces need it (underside of a CD; tiger eye; etc)
- very hard to measure and very unstable
- for many surfaces, light leaving the surface is largely independent of exit angle (surface roughness is one source of this property)

• Directional hemispheric reflectance:

- the fraction of the incident irradiance in a given direction that is reflected by the surface (whatever the direction of reflection)
- unitless, range 0-1

$$\rho_{dh}(\vartheta_{i},\varphi_{i}) = \frac{\int_{\Omega} L_{o}(\underline{x},\vartheta_{o},\varphi_{o})\cos\vartheta_{o}d\omega_{o}}{L_{i}(\underline{x},\vartheta_{i},\varphi_{i})\cos\vartheta_{i}d\omega_{i}}$$
$$= \int_{\Omega} \rho_{bd}(\underline{x},\vartheta_{o},\varphi_{o},\vartheta_{i},\varphi_{i})\cos\vartheta_{o}d\omega_{o}$$

Lambertian surfaces and albedo

• For some surfaces, the DHR is independent of direction

- cotton cloth, carpets, matte paper, matte paints, etc.
- radiance leaving the surface is independent of angle
- Lambertian surfaces (same Lambert) or ideal diffuse surfaces
- Use radiosity as a unit to describe light leaving the surface
- DHR is often called diffuse reflectance, or albedo
- for a Lambertian surface, BRDF is independent of angle, too.
- Useful fact:

$$\rho_{brdf} = \frac{\rho_d}{\pi}$$

Specular surfaces

- Another important class of surfaces is specular, or mirrorlike.
 - radiation arriving along a direction leaves along the specular direction
 - reflect about normal
 - some fraction is absorbed, some reflected
 - on real surfaces, energy usually goes into a lobe of directions
 - can write a BRDF, but requires the use of funny functions

Phong's model

- There are very few cases where the exact shape of the specular lobe matters.
- Typically:
 - very, very small --- mirror
 - small -- blurry mirror
 - bigger -- see only light sources as "specularities"
 - very big -- faint specularities
- Phong's model

δΘ

Lambertian + specular

- Widespread model
 - all surfaces are Lambertian plus specular component
- Advantages
 - easy to manipulate
 - very often quite close true
- Disadvantages
 - some surfaces are not
 - e.g. underside of CD's, feathers of many birds, blue spots on many marine crustaceans and fish, most rough surfaces, oil films (skin!), wet surfaces
 - Generally, very little advantage in modelling behaviour of light at a surface in more detail -- it is quite difficult to understand behaviour of L+S surfaces

- Examples: diffuser boxes, white walls.
- The radiosity at a point due to an area source is obtained by adding up the contribution over the section of view hemisphere subtended by the source
 - change variables and add up over the source

Radiosity due to an area source

- rho is albedo
- E is exitance
- r(x, u) is distance between points
- u is a coordinate on the source

$$B(x) = \rho_d(x) \int_{\Omega} L_i(x, u \to x) \cos \theta_i d\omega$$

= $\rho_d(x) \int_{\Omega} L_e(x, u \to x) \cos \theta_i d\omega$
= $\rho_d(x) \int_{\Omega} \left(\frac{E(u)}{\pi}\right) \cos \theta_i d\omega$
= $\rho_d(x) \int_{source} \left(\frac{E(u)}{\pi}\right) \cos \theta_i \left(\cos \theta_s \frac{dA_u}{r(x, u)^2}\right)$
= $\rho_d(x) \int_{source} E(u) \frac{\cos \theta_i \cos \theta_s}{\pi r(x, u)^2} dA_u$

Caching

• What should we cache?

- radiosity (but surface might not be diffuse)
- radiance (tricky to represent)
- irradiance
 - incoming light
 - because we can turn it into outgoing light easily

Irradiance caching

- The indirect term varies slowly over space
 - cache and interpolate
- Cache by
 - storing irradiance samples in octree with normal
- Interpolate by
 - obtaining all samples with error smaller than
 - error is:
 - (distance term)+(normal term)
 - not enough samples?
 - generate new ones and cache them
 - forming weighted sum using extrapolated illumination values

Powerful standard method in almost every modern rendering system

Irradiance cache vs path tracing, from Pharr + Humphreys

Cache sample locations from Pharr + Humphreys

Irradiance caching: samples

- Obtaining samples:
 - evaluate irradiance at sample point by:
 - direct term:
 - sample each source directly, as before
 - indirect term:
 - sample non-source directions with probability

$$P(\omega)$$

• form estimate

$$\frac{1}{N} \sum \frac{L(x,\omega_j)\cos\theta_j}{P(\omega_j)}$$

• Notice that the incoming radiance might be computed from the cache, if there are samples

Note: Russian roulette prevents the tree getting out of hand Fairly quickly, the cache fills up

Figure 7: The lines represent rays, and the points represent primary evaluations. The rays that reuse computed values do not propagate.

Figure from Ward et al, "A Ray-tracing solution for diffuse interreflection", 1988

Irradiance caching: reconstruction

• Query octree for possible samples

- Do not want to use:
 - samples that are too far away
 - this is a function of how samples were obtained
 - samples with a bad normal
 - samples that lie closer to the eye than current point
- Reconstruct by
 - weighted sum of samples
 - interpolation process can use:
 - distances
 - gradients

Figure 4: \vec{P}_0 sees few close-by surfaces, so its estimated error at \vec{P} is small. But \vec{P} is shadowed by the surface under \vec{P}_0 , and the true illuminance is different.

Figure from Ward et al, "A Ray-tracing solution for diffuse interreflection", 1988

Specular-diffuse transfer creates important effects; curved surfaces can collect light into caustics

Transmissive-diffuse transfer creates important effects; curved surfaces can collect light into caustics

Transmissive-diffuse transfer creates important effects; curved surfaces can collect light into caustics

Trasmissive - diffuse transfer creates important effects; curved surfaces can collect light into caustics

Particle tracing

- Particle starts at source
- At a diffuse surface with albedo ρ , path is
 - continued with probability ρ
 - absorbed with probability 1- ρ
- In either case, it deposits power in a texel at that point
 - particle with power ϕ arriving at texel with area A_t
 - deposits power ϕ

$\overline{A_{i}}$

• Direction along which path continues is uniform over exit hemisphere

This is a diffuse surface formulation.

More complex surface types

• Specular, transmissive, glossy, etc

• Must now work with the radiance along path segments, brdf

$$L(\mathbf{x}, \mathbf{x} \to \mathbf{y}) = L_e(\mathbf{x}, \mathbf{x} \to \mathbf{y}) + \int \text{radiance due to irradiance} d\omega$$

• Expand to

$$L(\mathbf{x}, \mathbf{x} \to \mathbf{y}) = L_e(\mathbf{x}, \mathbf{x} \to \mathbf{y}) + \int \rho_{bd}(\mathbf{x} \to \mathbf{y}, \mathbf{u} \to \mathbf{x}) L(\mathbf{x}, \mathbf{u} \to \mathbf{x}) \cos \theta d\omega$$

Path tracing for general surfaces

• Path tracing

- Path starts at eye
- At a surface, path is
 - continued with probability α
 - absorbed with probability 1- α
- Value of path
 - $L_e(\mathbf{x}_n, \mathbf{x}_n \to \mathbf{x}_{n-1})$ if it arrives at luminaire
 - 0 otherwise
- Direction along which path continues
 - a draw from P(ω)
- Weight path segment by

$$\frac{\rho_{bd}(\mathbf{x}_{n-1} \to \mathbf{x}_n, \mathbf{x}_n \to \mathbf{x}_{n+1})\cos\theta}{P(\omega)\alpha}$$

• and accumulate these weights

This will do anything, but with very serious variance problems

Variance problems

- Paths may not find the light often
 - this could be fixed by clever choice of P to heavily emphasize directions toward the source
- Caustics will be poorly rendered, because the path to the source is obscure

Bidirectional path tracing

- Start paths at both eye and light and join them
- Notice:
 - a pair of eye-light paths generates many possible transfer paths
 - we can use each of these, if we compute weights correctly to get integral estimate right

Figure from "Bidirectional path tracing." Lafortune and Willems, 1993

From the eye

From the source

Bidirectional

Figure from Dutre, Bekaert, Bala 03; rendered by Suykens-De Laet