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How we got here

® We want to render diffuse interreflections
® strategy: compute approximation B-hat, then gather

B = E + (pK)E + (pK)(B — E)

Exitance

Source term

mostly zero One or more bounces
Can change fast - shadows, etc.

Changes much more slowly, because K smoothes,
so we should approximate this




Gathering

® We gather radiosity from B-hat \

® Here S is all the surfaces in the world

(0K)(B — E) = p(x) /S 03010301 177 (%, w) (B(u) — E(u))dA,

T2

® Another integral
® but not a good idea to integrate over dAs
® too much area, too many samples
® instead, integrate over hemisphere




Remember Solid Angle

® By analogy with angle (in radians)
® The solid angle subtended by a patch area dA i1s given by

dw
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Changing variables

e Rather than integrate over all

area, integrate over hemisphere
® cquivalently, integrate over solid angle




Changing variables

® Start with: cos 0. cos 0 )
o(x) / €08 0s Vi, w) (B(u) — E(u))dA,
S

T2

® Substitute: 0
ubstitute CO:QSdAS:de
Value at far end of ray through angle
® (Get: 1 | |
p(x)— / cos 0;(B(w) — F(w))dw
T Jo

Incoming hemisphere




Evaluating integral

® Procedure

® Generate N uniform random samples on hemisphere
® procedure described on whiteboard

® Find B-hat-E at far end of each ray

® Average

® How big should N be?

® Variance
® estimate 1s a random variable, so must have variance
® small N implies high variance, fast
® Jarge N implies low variance, slow
® Variance will look like noise
® but should be small, because the term is small
® suggests small N is OK




Gathering from B-hat - E

Luminaire

KE rays for direct term

Eye Ray

rays for K(/I\B-E)




Alternative: B-hat via random paths

® Notice that B-hat 1s also an integral
® approximation to B

® Now from B=FE+ (pK)B

® we expect B:E+(p]C)B

® SO B — E — (IOIC)B
® expand by substituting to get B = F 4+ (plC) (E + (IOIC)B)
. ic B — E = (pK)(E + (pK)B)

® substitute from above to get B — B = (,OIC)E + (,OIC) (B — E)




Alternative

® We could evaluate B-hat - E recursively

A

B —E = (pK)E + (pK)(B — E)

|

Direct term Indirect term




Recursive evaluation

shade(x) = E(x) + p(z)direct(x) + RKBME(x)

Luminaire

KE rays for direct term

rays for K(?B—E)




Recursive evaluation: direct term

direct(x) = Z directfromL(z, )

lceluminaires

directfromL(x, L)

generate N uniform random samples u; on luminaire L with area A;

Ay cos 0, cos 0, .
return Rt ), oz Bu,)

We did this when we discussed area luminaires - no big mystery here




Recursive evaluation: Indirect term

This form isn’t yet practical, because the recursion is infinite!

RKBME(x)

Generate M points p; uniformly at random on unit hemisphere at «
For each point p;, write u; for the first hit on the ray from x to p;
write cos f,; for the cosine at = of the 7’th direction

return p(x orLt LN p(u;)direct(u;) + RKBME(u;)) cos fy;
™ M 1




B-hat via random paths becomes a tree

Luminaire

KE rays for direct term

KE rays for direct term

rays for K(/E\;‘E) rays for K(]/;'E)




B-hat via random paths becomes a tree

Luminaire

And so on...
Eye Ray

Indirect term
rays

Indirect term
rays




Recursive evaluation: Indirect term

Recursion no longer infinite, but estimate must be (very slightly) too small

RKBME(x, depth)

Generate M points p; uniformly at random on unit hemisphere at x
For each point p;, write u; for the first hit on the ray from x to p;
write cos 6,; for the cosine at x of the 7’th direction

if depth==

return 0

else

return p(z)2m < - > (p(u;)direct(u;) + RKBME(u;, depth — 1)) cos 0,




Recursive evaluation: Indirect term

Recursion no longer infinite, not as deep as previous,
but estimate must still be (very slightly) too small

RKBME(X, pace)

Generate M points p; uniformly at random on unit hemisphere at x
For each point p;, write u; for the first hit on the ray from x to p;
write cos fg; for the cosine at x of the ¢’th direction

if pgee < smallthresh

return 0

else

return p(z)2m = - >, (p(u;)direct (u;) + RKBME(u;, p(x) * pace)) cos Os;




Russian roulette

® Consider a random process:

® with probability p, return S
® with probability 1-p, return O

® Expected value:
) p*S

® We can use this to prune paths at random, mainly pruning
when albedo is low




Russian roulette

Notice what’s happened to the albedo term. When a path gets to low albedo surface, it
has little chance of continuing. This is unbiased!

RKBME(x)
Generate v uniform random variable, v € [0, 1]

if v > p(x)
return 0O
else

Generate M points p; uniformly at random on unit hemisphere at x
For each point p;, write u; for the first hit on the ray from x to p;
write cos 8, for the cosine at x of the 72’th direction

return 2%% ﬁ > i (p(u;)direct(u;) + RKBME(u;)) cos 0;




Light path analysis

® We’ve now done LD*E

® russian roulette cleverly explores paths; if there’s lots of albedo, paths tend
to be long; else short.

® russian roulette is a random process
® random choice of directions; random choice to prune
® unbiased
® Expected value is the right answer
® variance
because it’s random
looks like image noise

seen this before in lenses, motion blur
control by

® more rays (!)
® caching
® importance sampling (later)




Luminaire

Caching

Direct term

Eye Ray

Indirect term
rays

Imagine we’ve hit this point before;

why expand?

And so on...

Indirect term
rays




Caching

RKBME(x)

Generate v uniform random variable, v € [0, 1]

if v > p(x)
return 0
else

Interrogate cache - do we have an RKBME value close to x?
if yes

return cache value

else

Generate M points p; uniformly at random on unit hemisphere at x
For each point p;, write u; for the first hit on the ray from z to p;
write cos 6,; for the cosine at x of the 72’th direction

return 27 < - > (p(u;)direct (u;) + RKBME(u;)) cos




Irradiance cache vs path tracing, from Pharr + Humphreys, for
the same amount of cpu




Light path analysis

® Main strategy
® build and evaluate light paths

® We can do other kinds of path like this, too

® requires extra radiometry
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Radiometry

Questions:
® how “bright” will surfaces be?
® what is “brightness”?
® measuring light
® interactions between light and surfaces

Core idea - think about light arriving at a surface
around any point is a hemisphere of directions

Simplest problems can be dealt with by reasoning about
this hemisphere
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More complex wall
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More complex wall
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Solid Angle

® By analogy with angle (in radians)
® The solid angle subtended by a patch area dA is given by

~ dA cost

2
r

dw

® Another useful expression:

‘ \

dw =sind(dd)(d¢)




Radiance

Measure the “amount of light” at a point, in a direction
Property 1s:
Radiant power per unit foreshortened area per unit
solid angle

Units: watts per square meter per steradian (wm-2sr-1)

Usually written as: e Crucial property:

In a vacuum, radiance
leaving p in the direction of q
L( X, ﬁ, (,0) 1s the same as radiance
arriving at q from p
— hence the units




Radiance 1s constant along straight lines

\mz

dA,

\

e Power 1->2, leaving 1:

2

L(x,,9,¢)(dA, cos 9, )( dA, cos?, )
r

e Power 1->2, arriving at 2:

2
r

L(x0,8.)(dA, cosﬁz)(

dA, cost,

|




Irradiance

How much light is arriving at a surface?

Sensible unit is Irradiance L(x,9,¢)cos9dw
Incident power per unit area not foreshortened

This 1s a function of incoming angle.

A surface experiencing radiance L(x,0,$) coming in from

dw experiences irradiance .
* Crucial property:
Total power arriving at the
. face is of :
f L(X,ﬁ,(p) cos)sin ﬁdﬁd@ OUEace 15 Vel b}.] addu.lg
— irradiance over all incoming
@ angles --- this is why it’s a
natural unit




Surfaces and the BRDF

Many effects when light strikes a surface -- could be:
® absorbed; transmitted. reflected; scattered

Assume that

® surfaces don’t fluoresce
® surfaces don’t emit light (i.e. are cool)
® all the light leaving a point is due to that arriving at that point

Can model this situation with the Bidirectional
Reflectance Distribution Function (BRDF)
the ratio of the radiance in the outgoing direction to the

incident 1rradiance
pbd(laﬁ(,,@o,ﬁi,gpi,) —

Lo (l’ﬁo ’CO() )

L(x,9,,¢,)cosV,dw




White light tindoor)

UV light (black-light)




BRDF

® Units: inverse steradians (sr-1)
® Symmetric in incoming and outgoing directions

® Radiance leaving in a particular direction:
® add contributions from every incoming direction

f P (19ﬁo"po»ﬁia(pia)l’i(laﬁi’(pi)COSﬁidwi
Q




Suppressing Angles - Radiosity

In many situations, we do not really need angle

coordinates
® c.g. cotton cloth, where the reflected light is not dependent on angle

Appropriate radiometric unit is radiosity

® total power leaving a point on the surface, per unit area on the surface
(Wm-2)

Radiosity from radiance?
® sum radiance leaving surface over all exit directions

B(x)= fLO(g,ﬁ,qp)cosﬁda)
Q




Radiosity

® Important relationship:

® radiosity of a surface whose radiance is independent of angle (e.g. that
cotton cloth)

B(x)= fLO(g,ﬁ,qo)cosﬁdw
Q

= Lo(g)fcosﬁu’a)
Q

.7'17/22]1;

= Lo(g)ffcosﬁsinﬁdqz)dﬁ
0 O




.l. . .\ . | :'o |
A
. L '/ 4

m.

30 pm

f







[Lambertian surfaces and albedo

® For some surfaces, the BRDF is independent of direction

cotton cloth, carpets, matte paper, matte paints, etc.

radiance leaving the surface is independent of angle

Lambertian surfaces (same Lambert) or ideal diffuse surfaces

Use radiosity as a unit to describe light leaving the surface
percentage of incident light reflected is diffuse reflectance or albedo

® [seful fact:

Py
Pirar =
JU




Specular surfaces

® Another important class of surfaces is specular, or mirror-
like.

radiation arriving along a direction leaves along the specular direction
reflect about normal

some fraction is absorbed, some reflected

on real surfaces, energy usually goes into a lobe of directions

can write a BRDF, but requires the use of funny functions

from

point

source A

specular
direction




Radiosity due to an area source

rho 1s albedo
E 1s exitance

r(x, u) 1s distance between points
u is a coordinate on the source

\

B(x)= pd(x)fL,.(x,u — x)cos O.dw
Q

= pd(x)fLe(x,u — x)cos O.dw

E(u\
f - /cosedw

Q

( E(u)) dA,
J; " cos@i(coseg )

" r(xu)’)

cosH cos0,

9 [ Ho “da,

Jrr(x u)




The Rendering Equation- 1

® We can now write Angle between normal
and incoming direction

|
Lo(x,w,) = Le(x,w,) —I—/ Pbd (X, wo, w;) L; (X, w;) cos B;dw;
Q
| |

BRDF Incoming irradiance

Average over hemisphere

Radiance emitted from surface at that point in that direction

Radiance leaving a point in a direction




The Rendering Equation - 11

® This balance works for

® cach wavelength,
® at any time, SO

® So

Lo(X,wo, A\ t) = Le(X,we, A\ t)+
fQ pbd(X, Wo, Wy, )\, t)LZ (X, Wi, )\, t) COS szwz




