
Paths, diffuse
interreflections, caching

and radiometry
D.A. Forsyth

How we got here

• We want to render diffuse interreflections
• strategy: compute approximation B-hat, then gather

Exitance
Source term

mostly zero

Can change fast - shadows, etc.

One or more bounces

Changes much more slowly, because K smoothes,
so we should approximate this

B = E + (⇢K)E + (⇢K)(B̂ � E)

Gathering

• We gather radiosity from B-hat
• Here S is all the surfaces in the world

• Another integral
• but not a good idea to integrate over dAs
• too much area, too many samples
• instead, integrate over hemisphere

(⇢K)(

ˆB � E) = ⇢(x)

Z

S

cos ✓i cos ✓s
⇡r2

V is(x,u)(ˆB(u)� E(u))dAs

• By analogy with angle (in radians)
• The solid angle subtended by a patch area dA is given by

Remember Solid Angle

€

dω =
dAcosϑ

r2

Changing variables

• Rather than integrate over all
area, integrate over hemisphere
• equivalently, integrate over solid angle

cos ✓s
r2

dAs = d!s

Changing variables

• Start with:

• Substitute:

• Get:

⇢(x)

Z

S

cos ✓i cos ✓s
⇡r2

V is(x,u)(ˆB(u)� E(u))dAs

cos ✓s
r2

dAs = d!s

Incoming hemisphere

Value at far end of ray through angle

⇢(x)
1

⇡

Z

⌦
cos ✓i(ˆB(!)� E(!))d!

Evaluating integral

• Procedure
• Generate N uniform random samples on hemisphere
• procedure described on whiteboard
• Find B-hat-E at far end of each ray
• Average

• How big should N be?
• Variance
• estimate is a random variable, so must have variance
• small N implies high variance, fast
• large N implies low variance, slow
• Variance will look like noise
• but should be small, because the term is small
• suggests small N is OK

Gathering from B-hat - E

Luminaire

KE rays for direct term

rays for K(B-E)^

Eye Ray

B = E + (⇢K)E + (⇢K)(B̂ � E)

Alternative: B-hat via random paths

• Notice that B-hat is also an integral
• approximation to B

• Now from

• we expect

• so

• expand by substituting to get

• ie

• substitute from above to get

B = E + (⇢K)B

B̂ = E + (⇢K)B̂

B̂ � E = (⇢K)B̂

B̂ = E + (⇢K)(E + (⇢K)B̂)

B̂ � E = (⇢K)(E + (⇢K)B̂)

B̂ � E = (⇢K)E + (⇢K)(B̂ � E)

Alternative

• We could evaluate B-hat - E recursively

B̂ � E = (⇢K)E + (⇢K)(B̂ � E)

Direct term Indirect term

Recursive evaluation

shade(x) = E(x) + ⇢(x)direct(x) + RKBME(x)

Luminaire

KE rays for direct term

rays for K(B-E)^

Recursive evaluation: direct term

direct(x) =

X

l2luminaires

directfromL(x, l)

directfromL(x, L)

generate N uniform random samples ui on luminaire L with area Al

return

A
l

N

P
i
cos ✓

x

cos ✓
u

⇡r2 E(ui)

We did this when we discussed area luminaires - no big mystery here

Recursive evaluation: Indirect term

This form isn’t yet practical, because the recursion is infinite!

RKBME(x)

Generate M points pi uniformly at random on unit hemisphere at x

For each point pi, write ui for the first hit on the ray from x to pi

write cos ✓si for the cosine at x of the i’th direction

return ⇢(x)2⇡

1
⇡

1
M

P
i (⇢(ui)direct(ui) + RKBME(ui)) cos ✓si

 B-hat via random paths becomes a tree

Luminaire

KE rays for direct term

rays for K(B-E)^

KE rays for direct term

rays for K(B-E)
^

 B-hat via random paths becomes a tree

Eye Ray

Direct term

Luminaire

Indirect term
rays

Indirect term
rays

And so on...

Recursive evaluation: Indirect term

Recursion no longer infinite, but estimate must be (very slightly) too small

RKBME(x, depth)

Generate M points pi uniformly at random on unit hemisphere at x

For each point pi, write ui for the first hit on the ray from x to pi

write cos ✓si for the cosine at x of the i’th direction

if depth==0

return 0

else

return ⇢(x)2⇡

1
⇡

1
M

P
i (⇢(ui)direct(ui) + RKBME(ui, depth� 1)) cos ✓si

Recursive evaluation: Indirect term

Recursion no longer infinite, not as deep as previous,
 but estimate must still be (very slightly) too small

RKBME(x, ⇢acc)

Generate M points pi uniformly at random on unit hemisphere at x

For each point pi, write ui for the first hit on the ray from x to pi

write cos ✓si for the cosine at x of the i’th direction

if ⇢acc < smallthresh

return 0

else

return ⇢(x)2⇡

1
⇡

1
M

P
i (⇢(ui)direct(ui) + RKBME(ui, ⇢(x) ⇤ ⇢acc)) cos ✓si

Russian roulette

• Consider a random process:
• with probability p, return S
• with probability 1-p, return 0

• Expected value:
• p*S

• We can use this to prune paths at random, mainly pruning
when albedo is low

Russian roulette

RKBME(x)

Generate v uniform random variable, v 2 [0, 1]

if v > ⇢(x)

return 0

else

Generate M points pi uniformly at random on unit hemisphere at x

For each point pi, write ui for the first hit on the ray from x to pi

write cos ✓si for the cosine at x of the i’th direction

return 2⇡

1
⇡

1
M

P
i (⇢(ui)direct(ui) + RKBME(ui)) cos ✓si

Notice what’s happened to the albedo term. When a path gets to low albedo surface, it
has little chance of continuing. This is unbiased!

Light paths

• Light starts at the luminaire, ends at the eye
• Rendering involves accounting for these paths
• pixel value= Sum over paths (light contributed by path)
• When we ray trace, we are tracking a path that light followed
• we could go forward or backward along the path
• either way involves easy geometry we know how to do

• Label the path with L (bounces) E

• Bounce labels are D (diffuse), S (specular/transmissive)

• Big distinction:
• S we know the next dir, D we don’t

Light paths

• Example paths
• e.g. LDE
• luminaire to diffuse surface to eye
• already done these; trace eye ray then
• shadow ray+dot product (point light source)
• area source integral (area luminaire)

• LDSE
• luminaire to diffuse to specular to eye
• already done these; trace eye ray, one specular/transmissive ray then
• shadow ray+dot product (point light source)
• area source integral (area luminaire)

Light paths

• Example paths:
• LDS*E
• already done this, multiple specular/transmissive bounces
• LSDE
• sketched this; fire light out of luminaire, stick it in a map, pick up later
• LDD+E
• i.e. more than one diffuse bounce
• have not yet talked about this, next topic
• these paths can contribute a lot of light, but are hard to evaluate

Main points

• When a light path arrives at/leaves from S
• we know where it’s going/came from

• When a light path arrives at/leaves from D
• we don’t know where it’s going/came from

• Rendering ALWAYS answers “how bright is this”

Brightness = Diffuse term + term from far end of specular+ term from far end of transmitted

Light path analysis

• We’ve now done LD*E
• russian roulette cleverly explores paths; if there’s lots of albedo, paths tend

to be long; else short.
• russian roulette is a random process
• random choice of directions; random choice to prune
• unbiased
• Expected value is the right answer
• variance
• because it’s random
• looks like image noise
• seen this before in lenses, motion blur
• control by
• more rays (!)
• caching
• importance sampling (later)

Caching

Eye Ray

Direct term

Luminaire

Indirect term
rays

Indirect term
rays

And so on...

Imagine we’ve hit this point before;
why expand?

Caching
RKBME(x)

Generate v uniform random variable, v 2 [0, 1]

if v > ⇢(x)

return 0

else

Interrogate cache - do we have an RKBME value close to x?

if yes

return cache value

else

Generate M points pi uniformly at random on unit hemisphere at x

For each point pi, write ui for the first hit on the ray from x to pi

write cos ✓si for the cosine at x of the i’th direction

return 2⇡

1
⇡

1
M

P
i (⇢(ui)direct(ui) + RKBME(ui)) cos ✓si

Irradiance cache vs path tracing, from Pharr + Humphreys, for
the same amount of cpu

Light path analysis

• Main strategy
• build and evaluate light paths

• We can do other kinds of path like this, too
• requires extra radiometry

Ray tracing

add soft shadows

global illumination

Radiometry

• Questions:
• how “bright” will surfaces be?
• what is “brightness”?
• measuring light
• interactions between light and surfaces

• Core idea - think about light arriving at a surface
• around any point is a hemisphere of directions
• Simplest problems can be dealt with by reasoning about

this hemisphere

Lambert’s wall

More complex wall

More complex wall

• By analogy with angle (in radians)
• The solid angle subtended by a patch area dA is given by

• Another useful expression:

Solid Angle

Radiance

• Measure the “amount of light” at a point, in a direction
• Property is:

Radiant power per unit foreshortened area per unit
solid angle
• Units: watts per square meter per steradian (wm-2sr-1)
• Usually written as: • Crucial property:

In a vacuum, radiance
leaving p in the direction of q

is the same as radiance
arriving at q from p

– hence the units

Radiance is constant along straight lines

• Power 1->2, leaving 1:

• Power 1->2, arriving at 2:

• How much light is arriving at a surface?
• Sensible unit is Irradiance
• Incident power per unit area not foreshortened
• This is a function of incoming angle.
• A surface experiencing radiance L(x,θ,φ) coming in from

dω experiences irradiance

Irradiance

• Crucial property:
Total power arriving at the
surface is given by adding

irradiance over all incoming
angles --- this is why it’s a

natural unit

• Many effects when light strikes a surface -- could be:
• absorbed; transmitted. reflected; scattered

• Assume that
• surfaces don’t fluoresce
• surfaces don’t emit light (i.e. are cool)
• all the light leaving a point is due to that arriving at that point

• Can model this situation with the Bidirectional
Reflectance Distribution Function (BRDF)
• the ratio of the radiance in the outgoing direction to the

incident irradiance

Surfaces and the BRDF

BRDF

• Units: inverse steradians (sr-1)
• Symmetric in incoming and outgoing directions
• Radiance leaving in a particular direction:
• add contributions from every incoming direction

Suppressing Angles - Radiosity

• In many situations, we do not really need angle
coordinates
• e.g. cotton cloth, where the reflected light is not dependent on angle

• Appropriate radiometric unit is radiosity
• total power leaving a point on the surface, per unit area on the surface

(Wm-2)

• Radiosity from radiance?
• sum radiance leaving surface over all exit directions

Radiosity

• Important relationship:
• radiosity of a surface whose radiance is independent of angle (e.g. that

cotton cloth)

• For some surfaces, the BRDF is independent of direction
• cotton cloth, carpets, matte paper, matte paints, etc.
• radiance leaving the surface is independent of angle
• Lambertian surfaces (same Lambert) or ideal diffuse surfaces
• Use radiosity as a unit to describe light leaving the surface
• percentage of incident light reflected is diffuse reflectance or albedo

• Useful fact:

Lambertian surfaces and albedo

Specular surfaces

• Another important class of surfaces is specular, or mirror-
like.
• radiation arriving along a direction leaves along the specular direction
• reflect about normal
• some fraction is absorbed, some reflected
• on real surfaces, energy usually goes into a lobe of directions
• can write a BRDF, but requires the use of funny functions

Radiosity due to an area source

• rho is albedo
• E is exitance
• r(x, u) is distance between points
• u is a coordinate on the source

The Rendering Equation- 1

• We can now write

Radiance leaving a point in a direction

L
o

(x,!
o

) = L
e

(x,!
o

) +

Z

⌦
⇢
bd

(x,!
o

,!
i

)L
i

(x,!
i

) cos ✓
i

d!
i

Radiance emitted from surface at that point in that direction

BRDF Incoming irradiance

Average over hemisphere

Angle between normal
and incoming direction

The Rendering Equation - II

• This balance works for
• each wavelength,
• at any time, so

• So

L
o

(x,!
o

,�, t) = L
e

(x,!
o

,�, t)+R
⌦ ⇢

bd

(x,!
o

,!
i

,�, t)L
i

(x,!
i

,�, t) cos ✓
i

d!
i

