Paths, diffuse interreflections, caching and radiometry

D.A. Forsyth

How we got here

- We want to render diffuse interreflections
 - strategy: compute approximation B-hat, then gather

$$B = E + (\rho \mathcal{K})E + (\rho \mathcal{K})(\hat{B} - E)$$
 Exitance

ZAItalice

mostly zero

Source term

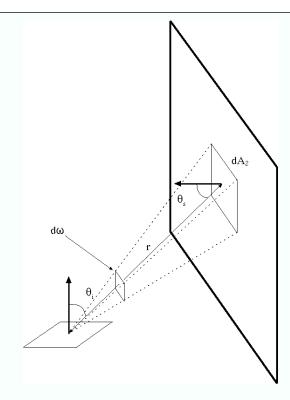
One or more bounces

Can change fast - shadows, etc.

Changes much more slowly, because K smoothes, so we should approximate this

Gathering

- We gather radiosity from B-hat
 - Here S is all the surfaces in the world



$$(\rho \mathcal{K})(\hat{B} - E) = \rho(\mathbf{x}) \int_{S} \frac{\cos \theta_{i} \cos \theta_{s}}{\pi r^{2}} Vis(\mathbf{x}, \mathbf{u})(\hat{B}(\mathbf{u}) - E(\mathbf{u})) dA_{s}$$

- Another integral
 - but not a good idea to integrate over dAs
 - too much area, too many samples
 - instead, integrate over hemisphere

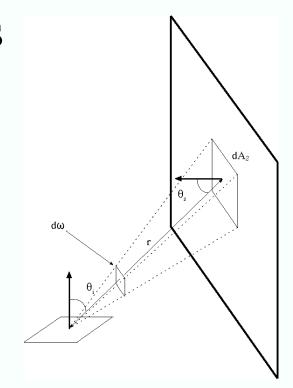
Remember Solid Angle

- By analogy with angle (in radians)
- The solid angle subtended by a patch area dA is given by

$$d\omega = \frac{dA\cos\vartheta}{r^2}$$

Changing variables

- Rather than integrate over all area, integrate over hemisphere
 - equivalently, integrate over solid angle



$$\frac{\cos \theta_s}{r^2} dA_s = d\omega_s$$

Changing variables

• Start with: $\int \cos \theta_i \cos \theta_s$

$$\rho(\mathbf{x}) \int_{S} \frac{\cos \theta_{i} \cos \theta_{s}}{\pi r^{2}} Vis(\mathbf{x}, \mathbf{u}) (\hat{B}(\mathbf{u}) - E(\mathbf{u})) dA_{s}$$

• Substitute: $\frac{\cos \theta_s}{r^2} dA_s = d\omega_s$

Value at far end of ray through angle

• Get:
$$\rho(\mathbf{x}) \frac{1}{\pi} \int_{\Omega} \cos \theta_i (\hat{B}(\omega) - E(\omega)) d\omega$$
 Incoming hemisphere

Evaluating integral

Procedure

- Generate N uniform random samples on hemisphere
 - procedure described on whiteboard
- Find B-hat-E at far end of each ray
- Average

• How big should N be?

- Variance
 - estimate is a random variable, so must have variance
 - small N implies high variance, fast
 - large N implies low variance, slow
- Variance will look like noise
 - but should be small, because the term is small
 - suggests small N is OK

Gathering from B-hat - E



$$B = E + (\rho \mathcal{K})E + (\rho \mathcal{K})(\hat{B} - E)$$

Alternative: B-hat via random paths

- Notice that B-hat is also an integral
 - approximation to B
- Now from $B = E + (\rho \mathcal{K})B$

• we expect
$$\hat{B} = E + (\rho \mathcal{K})\hat{B}$$

• so
$$\hat{B} - E = (\rho \mathcal{K})\hat{B}$$

$$ullet$$
 expand by substituting to get $\hat{B} = E + (
ho \mathcal{K})(E + (
ho \mathcal{K})\hat{B})$

$$\hat{B}-E=(
ho\mathcal{K})(E+(
ho\mathcal{K})\hat{B})$$

• substitute from above to get
$$\hat{B} - E = (\rho \mathcal{K})E + (\rho \mathcal{K})(\hat{B} - E)$$

Alternative

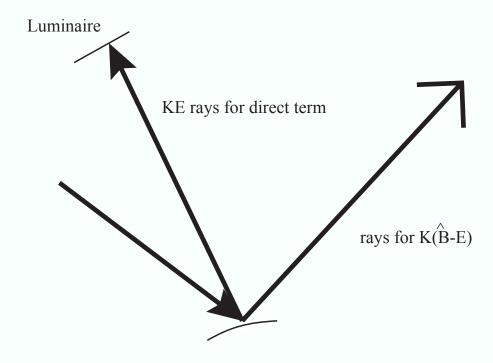
• We could evaluate B-hat - E recursively

$$\hat{B} - E = (\rho \mathcal{K})E + (\rho \mathcal{K})(\hat{B} - E)$$

$$| \qquad \qquad |$$
Direct term Indirect term

Recursive evaluation

$$\operatorname{shade}(x) = E(x) + \rho(x)\operatorname{direct}(x) + \operatorname{RKBME}(x)$$



Recursive evaluation: direct term

$$\operatorname{direct}(x) = \sum_{l \in \text{luminaires}} \operatorname{directfromL}(x, l)$$

directfromL(x, L)

generate N uniform random samples u_i on luminaire L with area A_l return $\frac{A_l}{N} \sum_i \frac{\cos \theta_x \cos \theta_u}{\pi r^2} E(u_i)$

We did this when we discussed area luminaires - no big mystery here

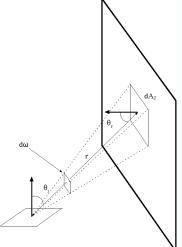
Recursive evaluation: Indirect term

This form isn't yet practical, because the recursion is infinite!

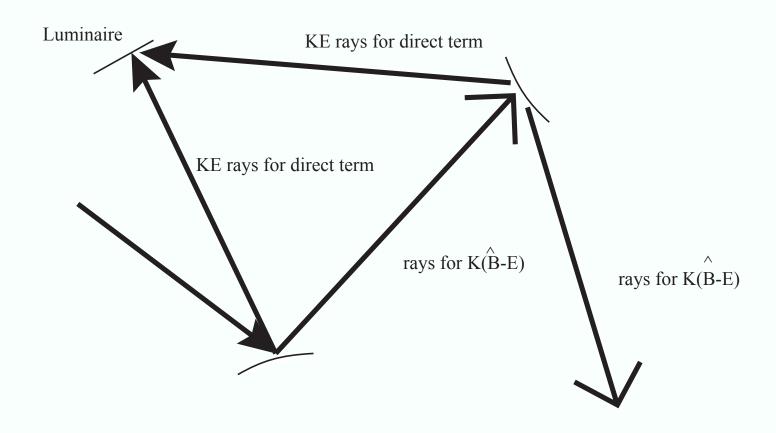
RKBME(x)

Generate M points p_i uniformly at random on unit hemisphere at x For each point p_i , write u_i for the first hit on the ray from x to p_i write $\cos \theta_{si}$ for the cosine at x of the i'th direction

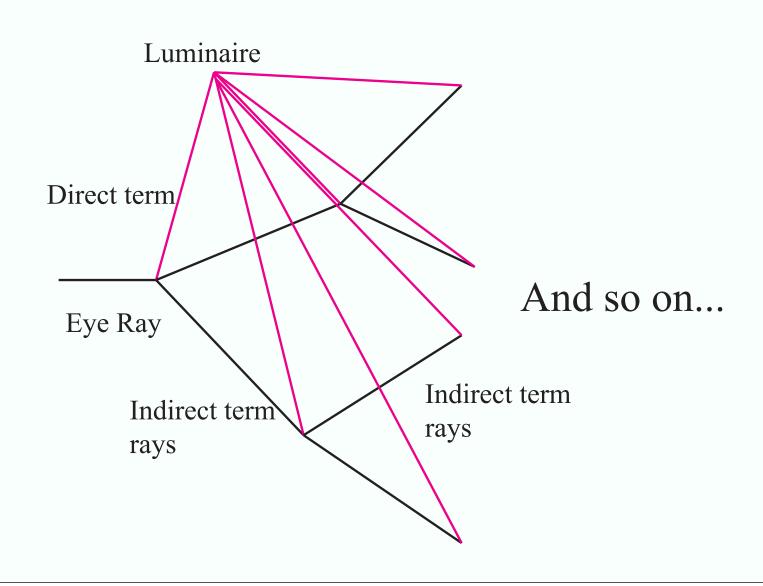
return $\rho(x)2\pi \frac{1}{\pi} \frac{1}{M} \sum_{i} (\rho(u_i) \operatorname{direct}(u_i) + \operatorname{RKBME}(u_i)) \cos \theta_{si}$



B-hat via random paths becomes a tree



B-hat via random paths becomes a tree



Recursive evaluation: Indirect term

Recursion no longer infinite, but estimate must be (very slightly) too small

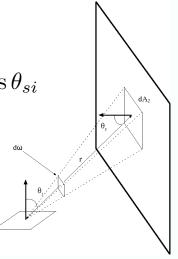
RKBME(x, depth)

Generate M points p_i uniformly at random on unit hemisphere at xFor each point p_i , write u_i for the first hit on the ray from x to p_i write $\cos \theta_{si}$ for the cosine at x of the i'th direction if depth==0

return 0

else

return $\rho(x)2\pi \frac{1}{\pi} \frac{1}{M} \sum_{i} (\rho(u_i) \operatorname{direct}(u_i) + \operatorname{RKBME}(u_i, depth - 1)) \cos \theta_{si}$



Recursive evaluation: Indirect term

Recursion no longer infinite, not as deep as previous, but estimate must still be (very slightly) too small

RKBME(x, ρ_{acc})

Generate M points p_i uniformly at random on unit hemisphere at x For each point p_i , write u_i for the first hit on the ray from x to p_i write $\cos \theta_{si}$ for the cosine at x of the i'th direction if $\rho_{acc} < \text{smallthresh}$ return 0

else

return $\rho(x)2\pi \frac{1}{\pi} \frac{1}{M} \sum_{i} (\rho(u_i) \operatorname{direct}(u_i) + \operatorname{RKBME}(u_i, \rho(x) * \rho_{acc})) \cos \theta_{si}$

Russian roulette

- Consider a random process:
 - with probability p, return S
 - with probability 1-p, return 0
- Expected value:
 - p*S
- We can use this to prune paths at random, mainly pruning when albedo is low

Russian roulette

Notice what's happened to the albedo term. When a path gets to low albedo surface, it has little chance of continuing. This is unbiased!

RKBME(x)

Generate v uniform random variable, $v \in [0, 1]$

if $v > \rho(x)$ return 0 else

Generate M points p_i uniformly at random on unit hemisphere at xFor each point p_i , write u_i for the first hit on the ray from x to p_i write $\cos \theta_{si}$ for the cosine at x of the i'th direction

return $2\pi \frac{1}{\pi} \frac{1}{M} \sum_{i} (\rho(u_i) \operatorname{direct}(u_i) + \operatorname{RKBME}(u_i)) \cos \theta_{si}$

Light paths

- Light starts at the luminaire, ends at the eye
 - Rendering involves accounting for these paths
 - pixel value= Sum over paths (light contributed by path)
 - When we ray trace, we are tracking a path that light followed
 - we could go forward or backward along the path
 - either way involves easy geometry we know how to do
 - Label the path with L (bounces) E
- Bounce labels are D (diffuse), S (specular/transmissive)
- Big distinction:
 - S we know the next dir, D we don't

Light paths

- Example paths
 - e.g. LDE
 - luminaire to diffuse surface to eye
 - already done these; trace eye ray then
 - shadow ray+dot product (point light source)
 - area source integral (area luminaire)
 - LDSE
 - luminaire to diffuse to specular to eye
 - already done these; trace eye ray, one specular/transmissive ray then
 - shadow ray+dot product (point light source)
 - area source integral (area luminaire)

Light paths

- Example paths:
 - LDS*E
 - already done this, multiple specular/transmissive bounces
 - LSDE
 - sketched this; fire light out of luminaire, stick it in a map, pick up later
 - LDD+E
 - i.e. more than one diffuse bounce
 - have not yet talked about this, next topic
 - these paths can contribute a lot of light, but are hard to evaluate

Main points

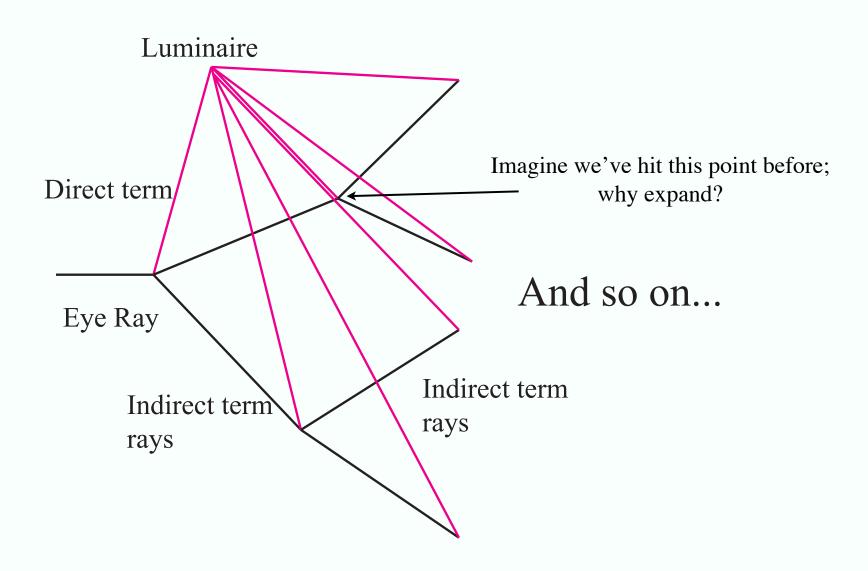
- When a light path arrives at/leaves from S
 - we know where it's going/came from
- When a light path arrives at/leaves from D
 - we don't know where it's going/came from
- Rendering ALWAYS answers "how bright is this"

Brightness = Diffuse term + term from far end of specular+ term from far end of transmitted

Light path analysis

- We've now done LD*E
 - russian roulette cleverly explores paths; if there's lots of albedo, paths tend to be long; else short.
 - russian roulette is a random process
 - random choice of directions; random choice to prune
 - unbiased
 - Expected value is the right answer
 - variance
 - because it's random
 - looks like image noise
 - seen this before in lenses, motion blur
 - control by
 - more rays (!)
 - caching
 - importance sampling (later)

Caching



Caching

RKBME(x)

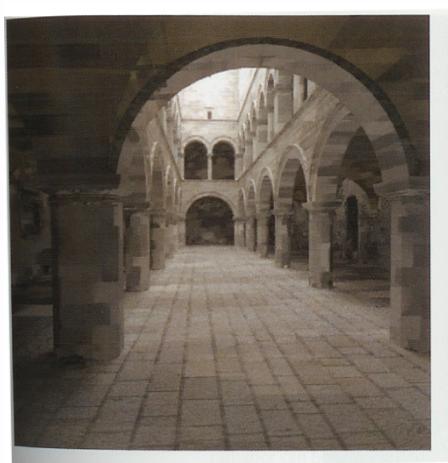
Generate v uniform random variable, $v \in [0, 1]$

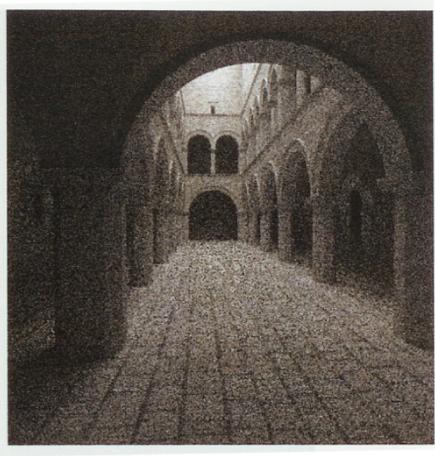
if $v > \rho(x)$ return 0 else

Interrogate cache - do we have an RKBME value close to x? if yes return cache value else

Generate M points p_i uniformly at random on unit hemisphere at x For each point p_i , write u_i for the first hit on the ray from x to p_i write $\cos \theta_{si}$ for the cosine at x of the i'th direction

return $2\pi \frac{1}{\pi} \frac{1}{M} \sum_{i} (\rho(u_i) \operatorname{direct}(u_i) + \operatorname{RKBME}(u_i)) \cos \theta_{si}$

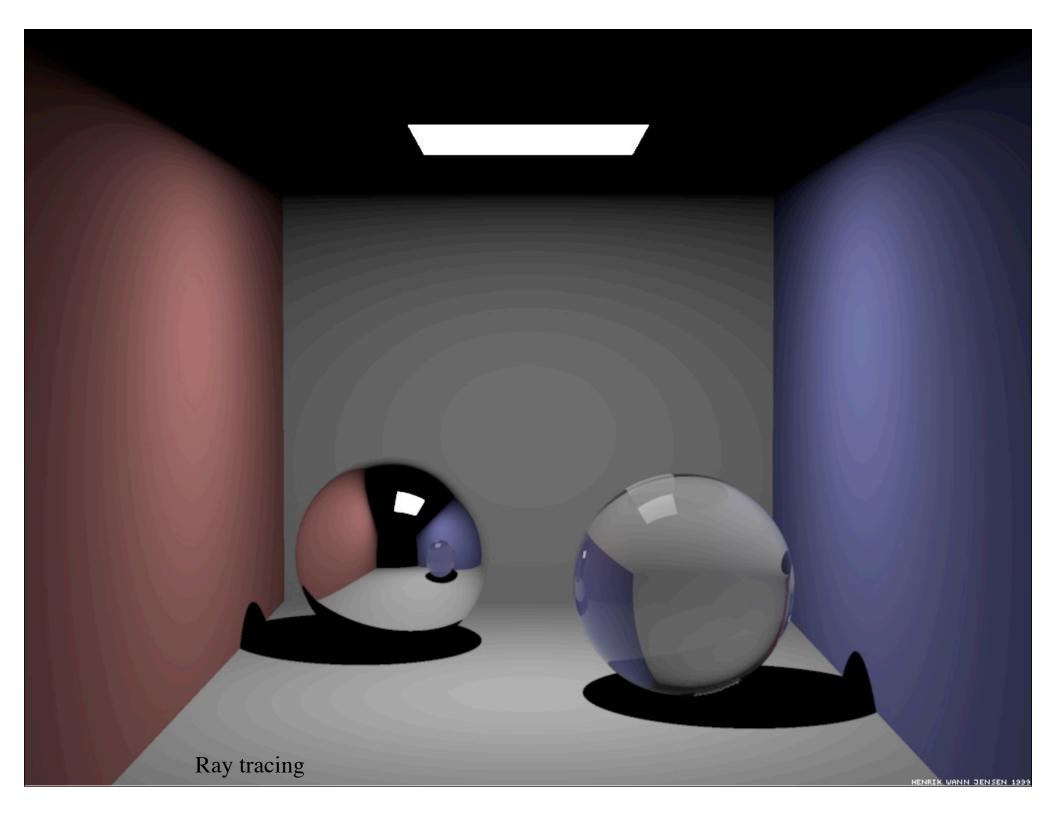


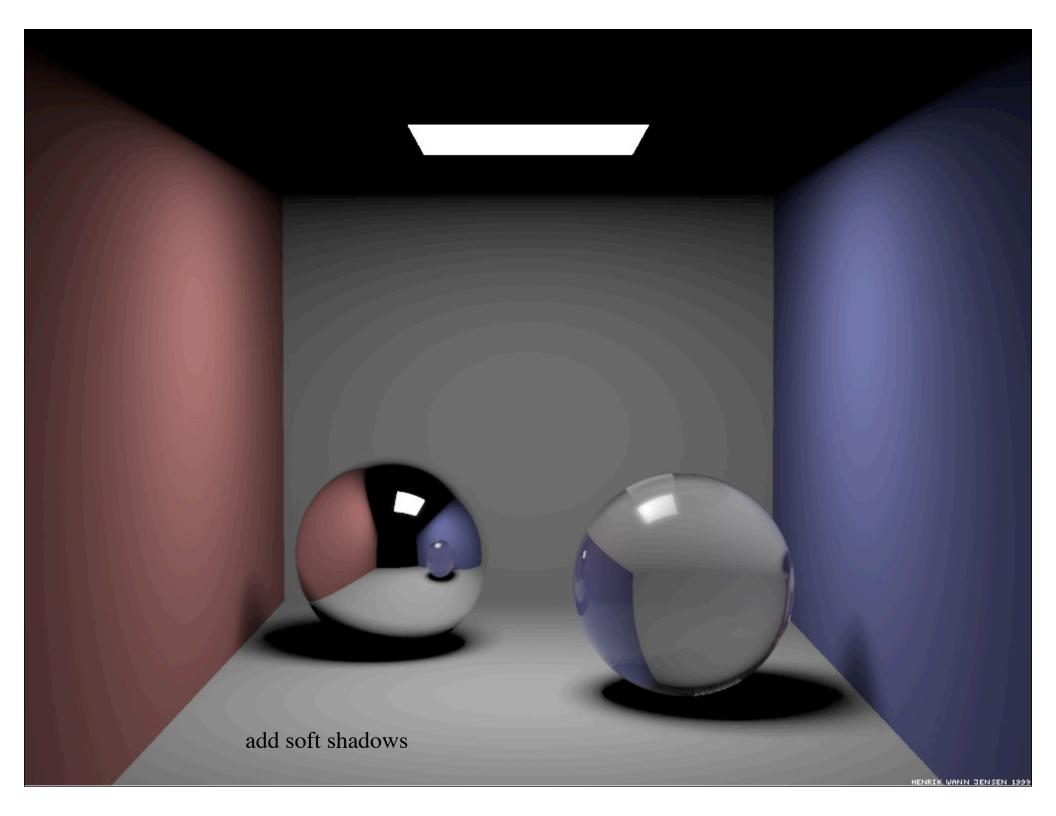


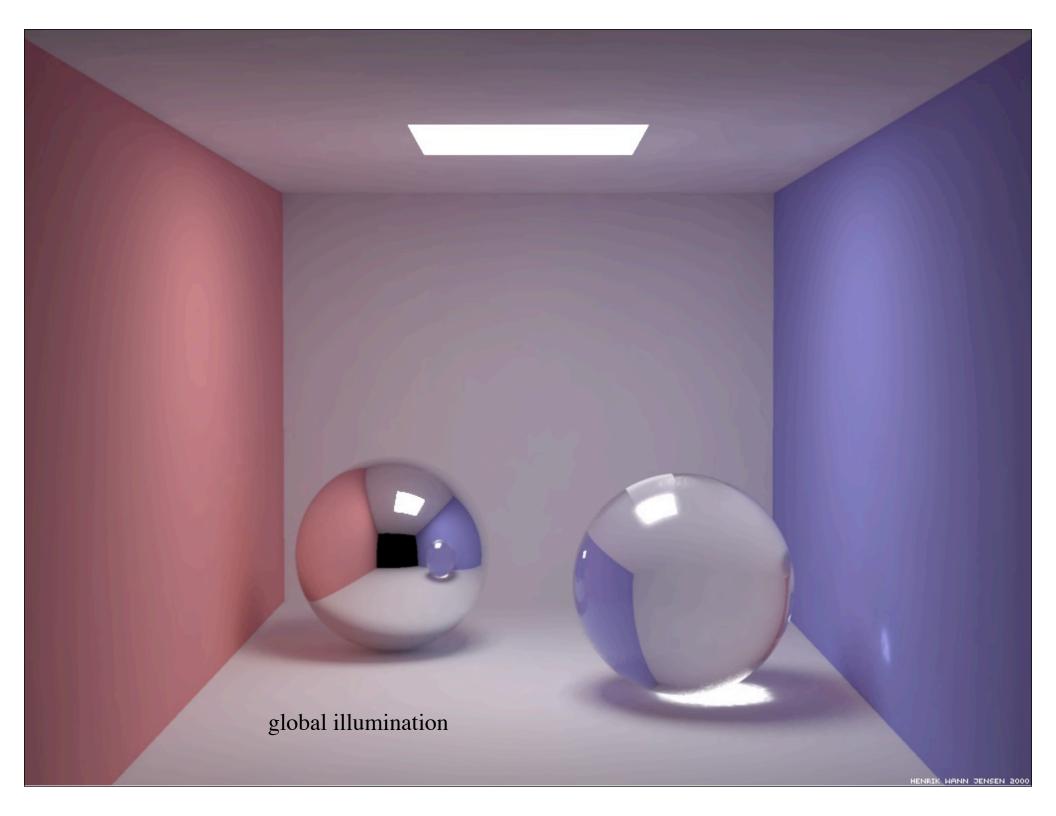
Irradiance cache vs path tracing, from Pharr + Humphreys, for the same amount of cpu

Light path analysis

- Main strategy
 - build and evaluate light paths
- We can do other kinds of path like this, too
 - requires extra radiometry

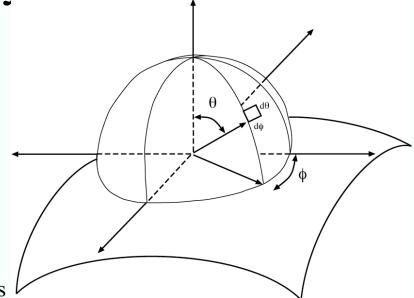




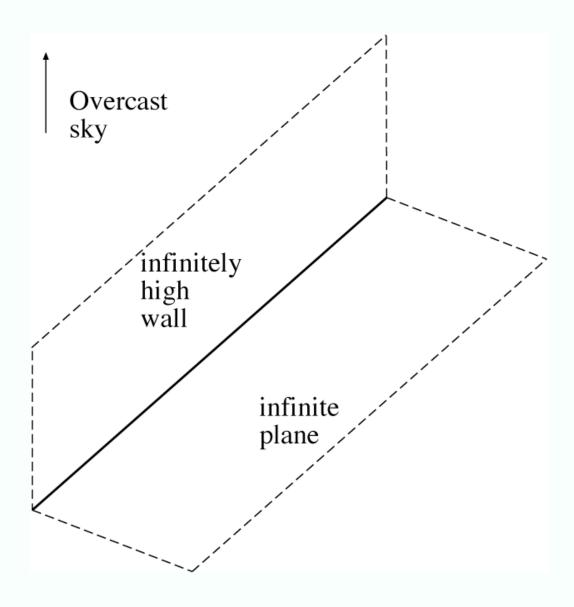


Radiometry

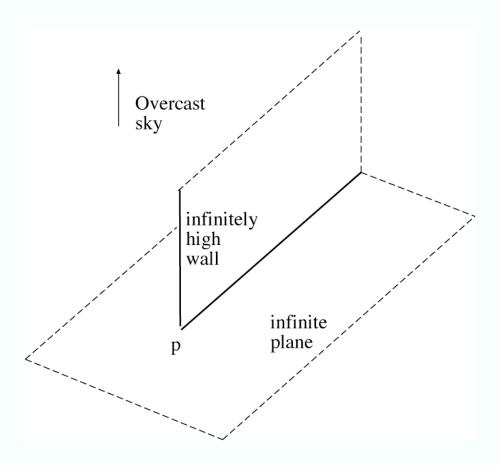
- Questions:
 - how "bright" will surfaces be?
 - what is "brightness"?
 - measuring light
 - interactions between light and surfaces
- Core idea think about light arriving at a surface
- around any point is a hemisphere of directions
- Simplest problems can be dealt with by reasoning about this hemisphere



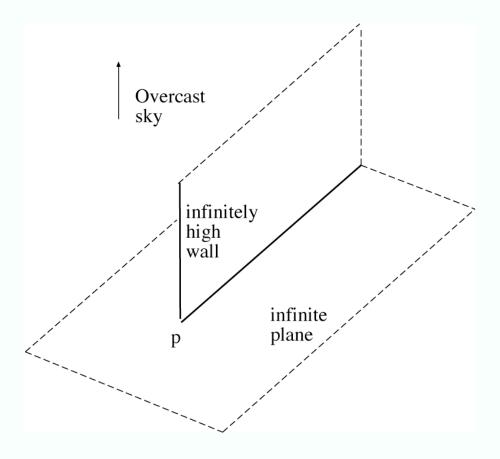
Lambert's wall

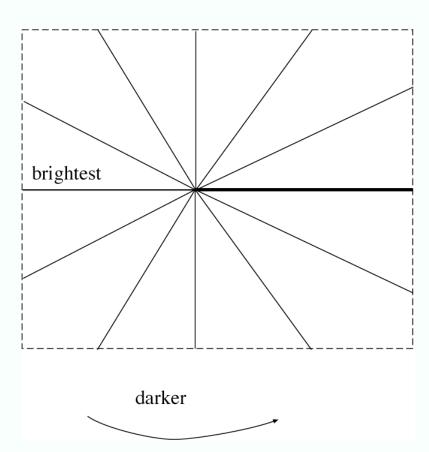


More complex wall



More complex wall





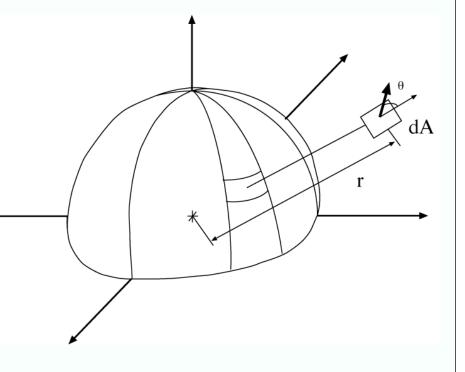
Solid Angle

- By analogy with angle (in radians)
- The solid angle subtended by a patch area dA is given by

$$d\omega = \frac{dA\cos\vartheta}{r^2}$$

• Another useful expression:

$$d\omega = \sin\vartheta (d\vartheta)(d\phi)$$



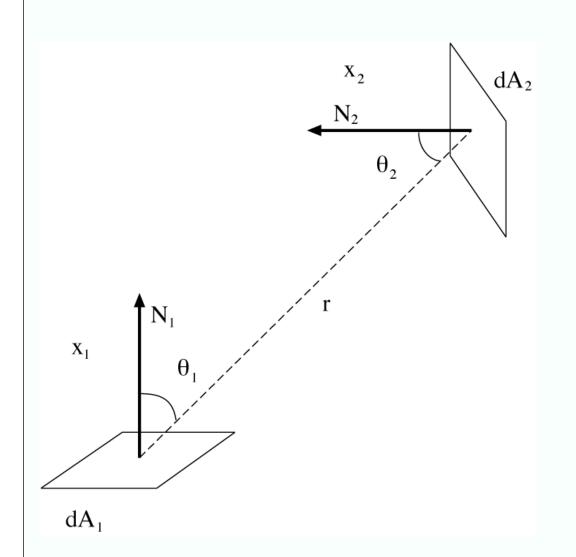
Radiance

- Measure the "amount of light" at a point, in a direction
- Property is:
 Radiant power per unit foreshortened area per unit solid angle
- Units: watts per square meter per steradian (wm-2sr-1)
- Usually written as:

$$L(\underline{x},\vartheta,\varphi)$$

• Crucial property:
In a vacuum, radiance
leaving p in the direction of q
is the same as radiance
arriving at q from p
— hence the units

Radiance is constant along straight lines



• Power 1->2, leaving 1:

$$L(\underline{x}_1,\vartheta,\varphi)(dA_1\cos\vartheta_1)\left(\frac{dA_2\cos\vartheta_2}{r^2}\right)$$

• Power 1->2, arriving at 2:

$$L(\underline{x}_2, \vartheta, \varphi)(dA_2 \cos \vartheta_2) \left(\frac{dA_1 \cos \vartheta_1}{r^2}\right)$$

Irradiance

- How much light is arriving at a surface?
- Sensible unit is Irradiance

 $L(\underline{x},\vartheta,\varphi)\cos\vartheta d\omega$

- Incident power per unit area not foreshortened
- This is a function of incoming angle.
- A surface experiencing radiance L(x,θ,φ) coming in from dω experiences irradiance

$$\int_{\Omega} L(\underline{x}, \vartheta, \varphi) \cos \vartheta \sin \vartheta d\vartheta d\varphi$$

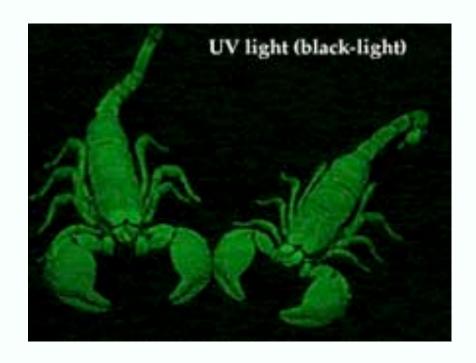
• Crucial property:

Total power arriving at the surface is given by adding irradiance over all incoming angles --- this is why it's a natural unit

Surfaces and the BRDF

- Many effects when light strikes a surface -- could be:
 - absorbed; transmitted. reflected; scattered
- Assume that
 - surfaces don't fluoresce
 - surfaces don't emit light (i.e. are cool)
 - all the light leaving a point is due to that arriving at that point
- Can model this situation with the Bidirectional Reflectance Distribution Function (BRDF)
- the ratio of the radiance in the outgoing direction to the incident irradiance

$$\rho_{bd}(\underline{x}, \vartheta_o, \varphi_o, \vartheta_i, \varphi_i) = \frac{L_o(\underline{x}, \vartheta_o, \varphi_o)}{L_i(\underline{x}, \vartheta_i, \varphi_i) \cos \vartheta_i d\omega}$$



BRDF

- Units: inverse steradians (sr-1)
- Symmetric in incoming and outgoing directions
- Radiance leaving in a particular direction:
 - add contributions from every incoming direction

$$\int_{\Omega} \rho_{bd}(\underline{x}, \vartheta_o, \varphi_o, \vartheta_i, \varphi_i) L_i(\underline{x}, \vartheta_i, \varphi_i) \cos \vartheta_i d\omega_i$$

Suppressing Angles - Radiosity

- In many situations, we do not really need angle coordinates
 - e.g. cotton cloth, where the reflected light is not dependent on angle
- Appropriate radiometric unit is radiosity
 - total power leaving a point on the surface, per unit area on the surface (Wm-2)
- Radiosity from radiance?
 - sum radiance leaving surface over all exit directions

$$B(\underline{x}) = \int_{\Omega} L_o(\underline{x}, \vartheta, \varphi) \cos \vartheta d\omega$$

Radiosity

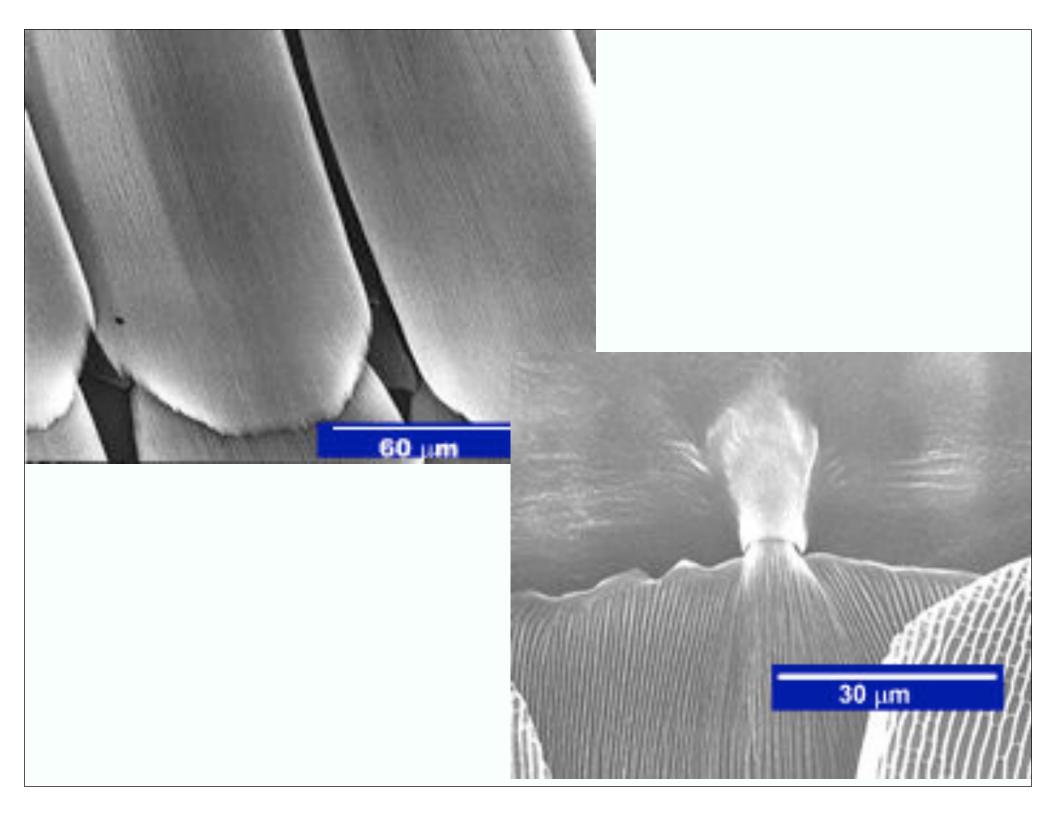
- Important relationship:
 - radiosity of a surface whose radiance is independent of angle (e.g. that cotton cloth)

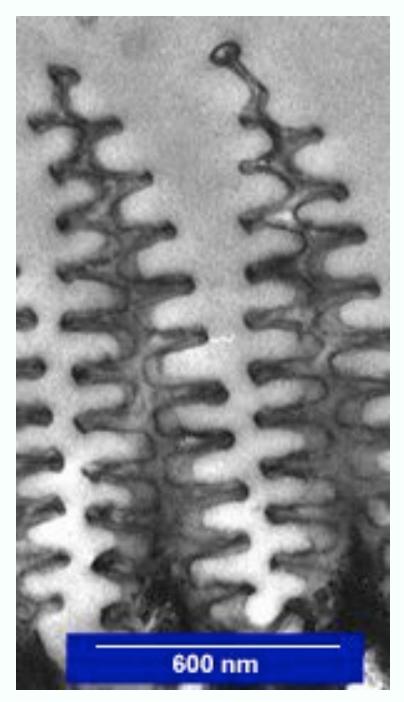
$$B(\underline{x}) = \int_{\Omega} L_o(\underline{x}, \vartheta, \varphi) \cos \vartheta d\omega$$

$$= L_o(\underline{x}) \int_{\Omega} \cos \vartheta d\omega$$

$$= L_o(\underline{x}) \int_{0}^{\pi/22\pi} \int_{0}^{\pi/22\pi} \cos \vartheta \sin \vartheta d\varphi d\vartheta$$

$$= \pi L_o(\underline{x})$$





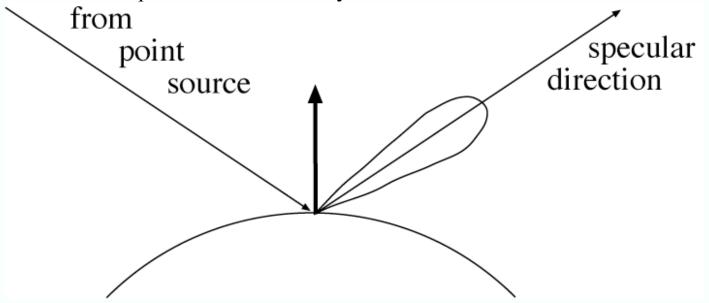
Lambertian surfaces and albedo

- For some surfaces, the BRDF is independent of direction
 - cotton cloth, carpets, matte paper, matte paints, etc.
 - radiance leaving the surface is independent of angle
 - Lambertian surfaces (same Lambert) or ideal diffuse surfaces
 - Use radiosity as a unit to describe light leaving the surface
 - percentage of incident light reflected is diffuse reflectance or albedo
- Useful fact:

$$\rho_{brdf} = \frac{\rho_d}{\pi}$$

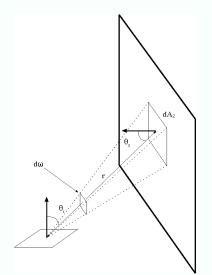
Specular surfaces

- Another important class of surfaces is specular, or mirror-like.
 - radiation arriving along a direction leaves along the specular direction
 - reflect about normal
 - some fraction is absorbed, some reflected
 - on real surfaces, energy usually goes into a lobe of directions
 - can write a BRDF, but requires the use of funny functions



Radiosity due to an area source

- rho is albedo
- E is exitance
- r(x, u) is distance between points
- u is a coordinate on the source



$$B(x) = \rho_d(x) \int_{\Omega} L_i(x, u \to x) \cos \theta_i d\omega$$

$$= \rho_d(x) \int_{\Omega} L_e(x, u \to x) \cos \theta_i d\omega$$

$$= \rho_d(x) \int_{\Omega} \left(\frac{E(u)}{\pi}\right) \cos \theta_i d\omega$$

$$= \rho_d(x) \int_{source} \left(\frac{E(u)}{\pi}\right) \cos \theta_i \left(\cos \theta_s \frac{dA_u}{r(x, u)^2}\right)$$

$$= \rho_d(x) \int_{source} E(u) \frac{\cos \theta_i \cos \theta_s}{\pi r(x, u)^2} dA_u$$

The Rendering Equation- 1

We can now write

Angle between normal and incoming direction

$$L_{o}(\mathbf{x}, \omega_{o}) = L_{e}(\mathbf{x}, \omega_{o}) + \int_{\Omega} \rho_{bd}(\mathbf{x}, \omega_{o}, \omega_{i}) L_{i}(\mathbf{x}, \omega_{i}) \cos \theta_{i} d\omega_{i}$$

$$\mid \qquad \qquad \mid \qquad \qquad \mid$$
BRDF Incoming irradiance
Average over hemisphere

Radiance emitted from surface at that point in that direction

Radiance leaving a point in a direction

The Rendering Equation - II

- This balance works for
 - each wavelength,
 - at any time, so
- So

$$L_o(\mathbf{x}, \omega_o, \lambda, t) = L_e(\mathbf{x}, \omega_o, \lambda, t) + \int_{\Omega} \rho_{bd}(\mathbf{x}, \omega_o, \omega_i, \lambda, t) L_i(\mathbf{x}, \omega_i, \lambda, t) \cos \theta_i d\omega_i$$