Procedural Animation

D.A. Forsyth
Big points

• Two important types of procedural animation
 • slice and dice data, like texture synthesis
 • build (approximate) physical simulation
• Extremely powerful
 • issues
 • how to slice and dice data well
 • what to simulate
Motion graph

- Take measured frames of motion as nodes
 - from motion capture, given us by our friends
- Directed edge from frame to any that could succeed it
 - decide by dynamical similarity criterion
 - see also (Kovar et al 02; Lee et al 02)
- A path is a motion
- Search with constraints
 - root position+orientation
 - length of motion
 - occupy a frame at specified time
 - limb close to a point

Motion Graph:
Nodes = Frames
Edges = Transition
A path = A motion
Search in a motion graph

- Local
 - Kovar et al 02
- With some horizon
 - Lee et al 02; Ikemoto, Arikan+Forsyth 05
- Whole path
 - Arikan+Forsyth 02; Arikan et al 03

Motion Graph:
Nodes = Frames
Edges = Transition
A path = A motion
Local Search methods

• Choose the next edge (Kovar, Gleicher, Pighin 02)
 • ensure that one can’t get stuck locally
 • but can’t guarantee a goal is available on longer scale
Annotation - desirable features

• Composability
 • run and wave;

• Comprehensive but not canonical vocabulary
 • because we don’t know a canonical vocabulary

• Speed and efficiency
 • because we don’t know a canonical vocab.

• Can do this with one classifier per vocabulary item
 • use an SVM applied to joint angles
 • form of on-line learning with human in the loop
 • works startlingly well (in practice 13 bits)
<table>
<thead>
<tr>
<th>Action</th>
<th>1st Frame</th>
<th>2nd Frame</th>
<th>3rd Frame</th>
<th>4th Frame</th>
<th>Motion demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walk</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Run</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wave</td>
<td>P</td>
<td>P</td>
<td>O</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Carry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Synthesis by dynamic programming

All frames in the database

Arikan+Forsyth+O’Brien 03
Dynamic programming practicalities

- **Scale**
 - Too many frames to synthesize
 - Too many frames in motion graph
- **Obtain good summary path, refine**
 - Form long blocks of motion, cluster
 - DP on stratified sample
 - split blocks on “best” path
 - find similar subblocks
 - DP on this lot
 - etc. to 1-frame blocks
Transplantation

- Motions clearly have a compositional character
 - Why not cut limbs off some motions and attach to others?
 - we get some bad motions
 - build a classifier to tell good from bad
 - avoid foot slide by leaving lower body alone
<table>
<thead>
<tr>
<th>SUBJ</th>
<th>CRS</th>
<th>Section</th>
<th>CRN</th>
<th>Date</th>
<th>Day</th>
<th>Start Time</th>
<th>End Time</th>
<th>Building Room</th>
<th>Exam Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>419</td>
<td>C3, C4</td>
<td>31366, 39734</td>
<td>5/8/2012</td>
<td>T</td>
<td>8:00 AM</td>
<td>11:00 AM</td>
<td>1SIEBL-1103, 1SIEBL-1105</td>
<td>Extra Space</td>
</tr>
</tbody>
</table>
Physically based animation

- **General idea**
 - take physical models, make assumptions, solve
 - render solution
- **Influential areas**
 - we’ve seen
 - particles,
 - collision+ballistic
 - Others
 - fluids (includes gasses)
Simple example: Accumulating snow

- **Build a fluid simulation**
 - Break volume into cells
 - Compute velocity in each cell (later!)

- **Insert particles**
 - On boundary
 - Proportional to snowfall, n.v
 - Velocity
 - Wind velocity
 - Gravity term

- **Landing cells**
 - Collect a proportion of their snow
 - Return it, if velocity is large
 - Slope snow

Feldman O’Brien 2002
Snow

Feldman O’Brien 2002
Incompressible, inviscid moving fluids

• Examples
 • incompressible fluids
 • water; air at low speeds; honey
 • viscous fluids
 • honey; oil

• Important simplifications
 • compressible, viscous fluids are hard to model
 • compressible flow doesn’t happen at low mach numbers
 • compression is important in explosions, but very hard to model
 • and most undesirable in hollywood style explosions
 • “dry water”
Dry water

- **Variables**
 - u: velocity vector
 - P: pressure field
 - f: force (which could be the result of interactions with particles, etc.)
 - per unit volume
 - ρ: density

- **Dynamics**
 - Density \times Acceleration = Force/unit volume

$$\rho \frac{Du}{dt} = f - \nabla P$$
Dry Water

\[\rho \frac{Du}{dt} = f - \nabla P \]

Substitute

\[\frac{Du}{dt} = \frac{\partial u}{\partial t} + u \nabla u \]

Rearrange, to get

\[\frac{\partial u}{\partial t} = -u \nabla u - \frac{\nabla P}{\rho} + \frac{f}{\rho} \]
Dry water

- Euler equations
 - Mass is conserved
 - Change of momentum is due to
 - change of pressure
 - external forces

\[\nabla u = 0 \]

\[\frac{\partial u}{\partial t} = -u \nabla u - \frac{\nabla P}{\rho} + \frac{f}{\rho} \]
Solving dry water

- Set up a grid
 - values of u, P at grid vertices

- Get intermediate velocity field
 - by taking a small time step, ignoring pressure effects
 - we will choose a pressure field to correct this to be an incompressible flow

\[
\frac{u^* - u}{\delta t} = - (u \cdot \nabla) u + f
\]

\[
u = u^* - \delta t \nabla P
\]

- Correct the intermediate velocity field

\[
\nabla^2 P = \frac{1}{\delta t} \nabla \cdot u^*
\]
Example: Suspended particle explosion

- There is hot gas, moving under forces generated by:
 - burning
 - momentum
 - changes in pressure
 - etc.

- In the gas, there are particles that:
 - move
 - heat and cool
 - radiate

- Render by rendering the particles:
 - different colors for different temperatures
 - soot particles are black
 - from 1e6 to 4e6 particles

Feldman, O’Brien, Arikan, 03
Modified dry water

- For an explosion, we must have some fluid expansion
 - at points of detonation
 - we do not want to allow the fluid to expand everywhere,
 - or couple this to the fluid’s dynamics
 - pressure waves

- So the pressure update step changes

\[\nabla u = \phi \]

\[\nabla^2 P = \frac{1}{\delta t} (\nabla \cdot \mathbf{u}^* - \phi) \]
Heat

- The fluid has heat
 - which is lost by radiation, etc. and gained from particles
- so do particles
 - generate heat by burning
 - which drives the temperature of the particle
 - which drives the transfer of heat into the fluid
Temperature field model

- Fluid temperature
- temperature grid

\[
\frac{DT}{dt} = -c_r \left(\frac{T - T_a}{T_{\text{max}} - T_a} \right) + c_k \nabla^2 T + \frac{1}{\rho c_v} \frac{\partial H}{\partial t}
\]

- Heat lost by radiation
- Heat diffusion (in model, \(c_k \) is set large)
- Heat gained from hot particles moving around
Particles in the fluid

- **Move**
 \[
 \frac{d^2 x}{dt^2} = \frac{f}{m}
 \]

- **Heat**
 \[
 \frac{dY}{dt} = \frac{1}{c_m} \frac{\partial H_p}{\partial t}
 \]
Particle fluid interactions

- **Drag on particle**
 - force in opposite direction applied to fluid
 - low mass - no drag

- **Thermal exchange**
 - heat transfer to a particle from fluid
 - transfer goes both ways
 - T - fluid temperature field

\[
\mathbf{f} = \alpha_d r^2 (\mathbf{u} - \frac{d\mathbf{x}}{dt}) \parallel (\mathbf{u} - \frac{d\mathbf{x}}{dt})
\]

\[
\frac{\partial H_p}{\partial t} = \alpha_h r^2 (T - Y)
\]

\[
\frac{\partial H}{\partial t} = \alpha_h r^2 (Y - T)
\]
Particle behaviour

• Particles burn
 • Simplified combustion
 • combustion is independent of oxygen
 • independent of temperature
 • products do not depend on temperature

• Model
 • Particle ignites when its temperature exceeds a fixed threshold
 • fixed amount of fuel
 • burn at a fixed rate (burn rate)
 • dies when its mass is zero

\[
\frac{dm}{dt} = z
\]

• Products
 • Heat
 • Gas
Products of combustion

- Heat
 \[\frac{\partial H_p}{\partial t} = b_h z \]
 Add this term to \(\frac{dH_p}{dt} \)

- Gas

- Soot
 - this builds up to a threshold - then a soot particle is released.

\[\Delta \phi = \frac{1}{V} b_g z \]

\[\frac{ds}{dt} = b_s z \]