
Learning Time Series

CS498

Today’s lecture

•  Doing machine learning on time series

•  Dynamic Time Warping

•  Simple speech recognition

What we can do

•  Data are points in a high-d space

−6 −4 −2 0 2 4 6 8
−6

−5

−4

−3

−2

−1

0

1

2

What time series are

•  Lots of points, can be thought of as a point
in a very very high-d space
–  Bad idea ….

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Shift variance

•  Time series have shift variance
– Are these two points close?

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time warp variance

•  Slight changes in timing are not relevant
– Are these two point close?

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Noise/filtering variance

•  Small changes can look serious
– How about these two points?

0 50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A real-world case

•  Spoken digits

What now?

•  Our models so far were too simple

•  How do we incorporate time?

•  How to get around all these problems?

A small case study

•  How to recognize words
–  e.g. yes/no or spoken digits

•  Build reliable features
–  Invariant to minor differences in inputs

•  Build a classifier that can do time
–  Invariant to temporal differences in inputs

Example data

Going from fine to coarse

•  Small differences are not important
–  Find features that obscure them

Frequency domain

•  Look at the magnitude Fourier transform

20 40 60 80 100 120

5

10

15

20

En
er
gy

Frequency

20 40 60 80 100 120

5

10

15

20

En
er
gy

Frequency

Time/Frequency features

•  A more robust representation
–  Bypassing minute waveform differences

A new problem

•  What about time warping?

Time warping

•  There is a “warped” time map
– How do we find it?

Matching warped series

•  Represent the warping with a path

5

4

3

2

11

1 2 3 4 5 6 i

j

0
0

r(i),i = 1,2,…,6 t(j), j = 1,2,…,5

Finding the overall “distance”

•  Each node will have a cost
–  e.g.,

•  Overall path cost is:

•  Optimal D path defines
the “distance” between
two given sequences

5

4

3

2

11

1 2 3 4 5 6 i

j

0
0

d(i, j)= r(i)− t(j)

D = d(ik , jk)
k
∑

Bellman’s optimality principle

•  For an optimal path
passing through (i , j):

•  Then:

5

4

3

2

11

1 2 3 4 5 6 i

j

0
0

(i0, j0)→
opt

(if , jf)

(i0, j0)→
opt

(if , jf)=

 (i0, j0)→
opt

(i, j),(i, j)→
opt

(if , jf)
⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪

(i , j)

In real-life

Finding an optimal path

•  Optimal path to (ik , jk):

–  Smaller search!

•  Local/global constraints
–  Limited transitions
– Nodes we never visit

Dmin(ik , jk)= min
ik −1, jk −1

Dmin(ik −1, jk −1)+d(ik , jk | ik −1, jk −1)

5

4

3

2

11

1 2 3 4 5 6 i

j

0
0

Example run

•  Global constraints
– bold dots

•  Local constraints
–  Black lines

•  Optimal path
–  Blue line

5

4

3

2

1

0
0

1 2 3 4 5 step k

1 2 3 4 5 i

j

Making this work for speech

•  Define a distance function

•  Define local constraints

•  Define global constraints

Distance function

•  Given our robust feature we can use a simple
measure like Euclidean distance

20 40 60 80 100 120

5

10

15

20

En
er
gy

Frequency

20 40 60 80 100 120

5

10

15

20

En
er
gy

Frequency

 d(i, j) = f1(i)− f2(j)

Global constraints

•  Define a ratio that is reasonable

j ! 2i" 1

j

J " #

J

1 $ #

1 $ # I " #

1

1

j ! 2i $ (J " 2I)

j !
1
2

1
2

i$(J " I)

j !
1
2

1
2

$i

I i

Local constraints

•  Monotonicity

–  repeat but don’t go back

•  This enforces time order
– don’t get “cat” from “act”

ik−1 ≤ ik jk−1 ≤ jk 5

j

4

3

2

1

0
0 1 2 3 4 5 6 i

non-allowable paths

More local constraints

•  Define acceptable paths
– Application dependent

(a) (b)

(c) (d)

Toy data run

(a) (b)

(c) (d)

Local Constraint

Speech example with same input

Same with similar utterance

Ditto, different input

A simple yes/no recognizer

•  Training phase
– Collect data to use as prototypes

•  Design phase
–  Figure out the best settings for features/DTW

•  Evaluation phase
–  Test on data

Training phase

•  Collect template data

"Yes" template

5 10 15 20 25

50

100

150

200

250

300

350

400

450

500
"No" template

5 10 15 20 25 30

50

100

150

200

250

300

350

400

450

500

Design Phase

•  Select features/distance
– Use spectrograms and Euclidean distance

•  Global constraints
– Don’t bother with ridiculous ratios

•  Local constraints
– Use only 0/+1 steps

(a) (b)

(c) (d)

Test Phase

•  Try with different utterances
– Normal speech
–  Slow speech
–  Fast speech

•  Classify according to distances between
the input and the templates

A basic speech recognizer

•  Collect template spoken words Ti(t)
•  Get their DTW distances from input x(t)

–  Smallest distance wins

x(t)

Ti(t)

Recognizing digits

Te
m

pl
at

e

Spoken digit

DTW-derived distances

And that’s all there is

•  This is the basis if simple speech systems
–  Yes/no prompts, simple digit recognizers (e.g.

in banks), phone calls by name

•  Simple example-based idea
– No need to learn about language/phonetics
–  But not very powerful in the end

Clustering Time Series

•  How do we cluster time series?
– We can’t just use k-means …

•  We can use DTW for this

Getting time series distances

•  Compare all pairs of samples using DTW
and obtain a distance d(i,j) between them

Distances between all yes/no samples

Converting distances to points

•  Find points x to solve the problem:

–  This is called Multidimensional Scaling (MDS)

•  Resulting points simulate the data that has
the prescribed distances
–  So we can use these instead

min
x1,...,xN

xi −x j −d(i, j)⎡
⎣⎢

⎤
⎦⎥
2

∑

Resulting points

−2 −1 0 1 2−1

0

1

−0.5
0

0.5

−2 −1 0 1 2

−1

−0.5

0

0.5

1

1.5

Yes
No

One more application of DTW

•  Synchronization of time series

•  Remember that DTW gives us temporal
correspondence as well

Where that’s useful

What we can do

•  Use noisy audio from original take as
template

•  Compare to actor’s overdub take

•  Find how to warp the second take to make
it synchronized with original take

Example case

•  Noisy audio, good video take

Using straight overdubbing

•  Second take, clean audio
•  Joining the two isn’t good

DTW to the rescue

•  Find optimal path in order to line up the
two sequences

•  Local constraints are now specific
– Must maintain the timing of the video input

Using DTW alignment

Recap

•  Learning with time series

•  Dynamic Time Warping

•  Some basic speech recognition

•  Other applications of DTW

