
Learning Time Series 
 

CS498 



Today’s lecture 

•  Doing machine learning on time series 

•  Dynamic Time Warping 

•  Simple speech recognition 



What we can do 

•  Data are points in a high-d space 
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What time series are 

•  Lots of points, can be thought of as a point 
in a very very high-d space 
–  Bad idea …. 
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Shift variance 

•  Time series have shift variance 
– Are these two points close? 
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Time warp variance 

•  Slight changes in timing are not relevant 
– Are these two point close? 
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Noise/filtering variance 

•  Small changes can look serious 
– How about these two points? 
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A real-world case 

•  Spoken digits 



What now? 

•  Our models so far were too simple 

•  How do we incorporate time? 

•  How to get around all these problems? 



A small case study 

•  How to recognize words 
–  e.g. yes/no or spoken digits 

•  Build reliable features 
–  Invariant to minor differences in inputs 

•  Build a classifier that can do time 
–  Invariant to temporal differences in inputs 



Example data 



Going from fine to coarse 

•  Small differences are not important 
–  Find features that obscure them 



Frequency domain 

•  Look at the magnitude Fourier transform 
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Time/Frequency features 

•  A more robust representation 
–  Bypassing minute waveform differences 



A new problem 

•  What about time warping? 



Time warping 

•  There is a “warped” time map 
– How do we find it? 



Matching warped series 

•  Represent the warping with a path 
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Finding the overall “distance” 

•  Each node will have a cost 
–  e.g.,  

•  Overall path cost is: 

•  Optimal D path defines 
the “distance” between 
two given sequences 
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Bellman’s optimality principle 

•  For an optimal path 
passing through (i , j): 

 

•  Then: 
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In real-life 



Finding an optimal path 

•  Optimal path to (ik , jk): 

 
–  Smaller search! 

•  Local/global constraints 
–  Limited transitions 
– Nodes we never visit 

Dmin(ik , jk )= min
ik −1, jk −1

Dmin(ik −1, jk −1)+d(ik , jk | ik −1, jk −1)
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Example run 

•  Global constraints 
– bold dots 

•  Local constraints 
–  Black lines 

•  Optimal path  
–  Blue line 
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Making this work for speech 

•  Define a distance function 

•  Define local constraints 

•  Define global constraints 



Distance function 

•  Given our robust feature we can use a simple 
measure like Euclidean distance 
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Global constraints 

•  Define a ratio that is reasonable 
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Local constraints 

•  Monotonicity 

–  repeat but don’t go back 

•  This enforces time order 
– don’t get “cat” from “act” 
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More local constraints 

•  Define acceptable paths 
– Application dependent 

(a) (b)

(c) (d)



Toy data run 

(a) (b)

(c) (d)

Local Constraint 



Speech example with same input 



Same with similar utterance 



Ditto, different input 



A simple yes/no recognizer 

•  Training phase 
– Collect data to use as prototypes 

•  Design phase 
–  Figure out the best settings for features/DTW 

•  Evaluation phase 
–  Test on data 



Training phase 

•  Collect template data 

"Yes" template
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Design Phase 

•  Select features/distance 
– Use spectrograms and Euclidean distance 

•  Global constraints 
– Don’t bother with ridiculous ratios 

•  Local constraints 
– Use only 0/+1 steps 
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Test Phase 

•  Try with different utterances 
– Normal speech 
–  Slow speech 
–  Fast speech 

•  Classify according to distances between 
the input and the templates 



A basic speech recognizer 

•  Collect template spoken words Ti(t) 
•  Get their DTW distances from input x(t) 

–  Smallest distance wins  

x(t) 

Ti(t) 



Recognizing digits 
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And that’s all there is 

•  This is the basis if simple speech systems 
–  Yes/no prompts, simple digit recognizers (e.g. 

in banks), phone calls by name 

•  Simple example-based idea 
– No need to learn about language/phonetics 
–  But not very powerful in the end 



Clustering Time Series 

•  How do we cluster time series? 
– We can’t just use k-means … 

•  We can use DTW for this 



Getting time series distances 

•  Compare all pairs of samples using DTW 
and obtain a distance d(i,j) between them 

Distances between all yes/no samples 



Converting distances to points 

•  Find points x to solve the problem: 

–  This is called Multidimensional Scaling (MDS) 

•  Resulting points simulate the data that has 
the prescribed distances 
–  So we can use these instead 
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Resulting points 
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One more application of DTW 

•  Synchronization of time series 

•  Remember that DTW gives us temporal 
correspondence as well 



Where that’s useful 



What we can do 

•  Use noisy audio from original take as 
template 

•  Compare to actor’s overdub take 

•  Find how to warp the second take to make 
it synchronized with original take 



Example case 

•  Noisy audio, good video take 



Using straight overdubbing 

•  Second take, clean audio 
•  Joining the two isn’t good 



DTW to the rescue 

•  Find optimal path in order to line up the 
two sequences 

•  Local constraints are now specific 
– Must maintain the timing of the video input 



Using DTW alignment 



Recap 

•  Learning with time series 

•  Dynamic Time Warping 

•  Some basic speech recognition 

•  Other applications of DTW 


