#### Learning Time Series

CS498

### Today's lecture

• Doing machine learning on time series

• Dynamic Time Warping

• Simple speech recognition



#### What we can do

• Data are points in a high-d space





## What time series are

- Lots of points, can be thought of as a point in a very very high-d space
  - Bad idea ....





### Shift variance

- Time series have shift variance
  - Are these two points close?





#### Time warp variance

Slight changes in timing are not relevant
 Are these two point close?



## Noise/filtering variance

Small changes can look serious

- How about these two points?



#### A real-world case

• Spoken digits





#### What now?

• Our models so far were too simple

• How do we incorporate time?

• How to get around all these problems?



## A small case study

- How to recognize words
  - e.g. yes/no or spoken digits
- Build reliable features

   Invariant to minor differences in inputs
- Build a classifier that can do time
  - Invariant to temporal differences in inputs



# Example data





# Going from fine to coarse

- Small differences are not important
  - Find features that obscure them







#### **Frequency domain**

• Look at the magnitude Fourier transform





## **Time/Frequency features**

- A more robust representation
  - Bypassing minute waveform differences











## A new problem

• What about time warping?











#### Time warping

There is a "warped" time map
 How do we find it?





### Matching warped series

• Represent the warping with a path





# Finding the overall "distance"

• Each node will have a cost

- e.g., 
$$d(i,j) = \left\| \mathbf{r}(i) - \mathbf{t}(j) \right\|$$

• Overall path *cost* is:

$$D = \sum_{k} d(i_k, j_k)$$

 Optimal D path defines the "distance" between two given sequences





# Bellman's optimality principle

- For an optimal path passing through (i, j):
  - $(i_0, j_0) \xrightarrow{opt} (i_f, j_f)$
- Then:







## In real-life





# Finding an optimal path

- Optimal path to  $(i_k, j_k)$ :
- $D_{\min}(i_k, j_k) = \min_{i_k 1, j_k 1} D_{\min}(i_k 1, j_k 1) + d(i_k, j_k \mid i_k 1, j_k 1)$

– Smaller search!

- Local/global constraints
  - Limited transitions
  - Nodes we never visit





## Example run

- Global constraints
   bold dots
- Local constraints
   Black lines
- Optimal path
   Blue line





# Making this work for speech

• Define a distance function

• Define local constraints

• Define global constraints



## **Distance function**

• Given our robust feature we can use a simple measure like Euclidean distance

$$d(i,j) = \left\| \left| \mathbf{f}_1(i) - \mathbf{f}_2(j) \right| \right|$$





## Global constraints

• Define a ratio that is reasonable



## Local constraints

Monotonicity

 $i_{k-1} \leq i_k \quad j_{k-1} \leq j_k$ 

- repeat but don't go back
- This enforces time order
   don't get "cat" from "act"





#### More local constraints

- Define acceptable paths
  - Application dependent





## Toy data run



















#### Speech example with same input

Input 1



Input 2



Distance matrix







#### Same with similar utterance



Distance matrix



Input 2



Cost matrix and optimal path





#### Ditto, different input

Input 1



Distance matrix



Input 2











# A simple yes/no recognizer

• Training phase

– Collect data to use as prototypes

• Design phase

- Figure out the best settings for features/DTW

- Evaluation phase
  - Test on data



## Training phase

Collect template data







"No" template

## **Design** Phase

- Select features/distance
  - Use spectrograms and Euclidean distance

- Global constraints
  - Don't bother with ridiculous ratios

Local constraints
 Use only 0/+1 steps





### **Test Phase**

- Try with different utterances
  - Normal speech
  - Slow speech
  - Fast speech
- Classify according to distances between the input and the templates



## A basic speech recognizer

- Collect template spoken words  $T_i(t)$
- Get their DTW distances from input *x*(*t*)
  - Smallest distance wins





## Recognizing digits



#### **DTW-derived distances**



# And that's all there is

• This is the basis if simple speech systems

Yes/no prompts, simple digit recognizers (e.g. in banks), phone calls by name

- Simple example-based idea
  - No need to learn about language/phonetics
  - But not very powerful in the end



# **Clustering Time Series**

How do we cluster time series?
We can't just use k-means ...

• We can use DTW for this



## Getting time series distances

• Compare all pairs of samples using DTW and obtain a distance d(i,j) between them



Distances between all yes/no samples



# Converting distances to points

• Find points *x* to solve the problem:

$$\min_{x_{1},...,x_{N}} \sum \left[ \left\| x_{i} - x_{j} \right\| - d(i,j) \right]^{2}$$

- This is called Multidimensional Scaling (MDS)

- Resulting points simulate the data that has the prescribed distances
  - So we can use these instead



# **Resulting points**





# One more application of DTW

• Synchronization of time series

Remember that DTW gives us temporal correspondence as well



### Where that's useful





### What we can do

 Use noisy audio from original take as template

• Compare to actor's overdub take

• Find how to warp the second take to make it synchronized with original take



#### Example case

• Noisy audio, good video take





# Using straight overdubbing

- Second take, clean audio
- Joining the two isn't good





## DTW to the rescue

Find optimal path in order to line up the two sequences

Local constraints are now specific
 Must maintain the timing of the video input



## Using DTW alignment





## Recap

- Learning with time series
- Dynamic Time Warping
- Some basic speech recognition
- Other applications of DTW

