Learning Time Series

CS498
Today’s lecture

- Doing machine learning on time series
- Dynamic Time Warping
- Simple speech recognition
What we can do

- Data are points in a high-d space
What time series are

- Lots of points, can be thought of as a point in a very very high-d space
 - Bad idea
Shift variance

- Time series have shift variance
 - Are these two points close?
Time warp variance

- Slight changes in timing are not relevant
 - Are these two point close?
Noise/filtering variance

- Small changes can look serious
 - How about these two points?
A real-world case

• Spoken digits
What now?

- Our models so far were too simple
- How do we incorporate time?
- How to get around all these problems?
A small case study

- How to recognize words
 - e.g. yes/no or spoken digits

- Build reliable features
 - Invariant to minor differences in inputs

- Build a classifier that can do time
 - Invariant to temporal differences in inputs
Example data
Going from fine to coarse

- Small differences are not important
 - Find features that obscure them
Frequency domain

- Look at the magnitude Fourier transform
Time/Frequency features

• A more robust representation
 – Bypassing minute waveform differences
A new problem

- What about time warping?
Time warping

- There is a “warped” time map
 - How do we find it?
Matching warped series

- Represent the warping with a path
 \[r(i), i = 1, 2, \ldots, 6 \quad t(j), j = 1, 2, \ldots, 5 \]
Finding the overall “distance”

- Each node will have a cost
 - e.g., $d(i, j) = \| r(i) - t(j) \|$

- Overall path cost is:

 $$D = \sum_k d(i_k, j_k)$$

- Optimal D path defines the “distance” between two given sequences
Bellman’s optimality principle

- For an optimal path passing through \((i, j)\):
 \[
 \begin{align*}
 \text{opt} \\
 (i_0, j_0) \rightarrow (i_f, j_f)
 \end{align*}
 \]

- Then:
 \[
 \begin{align*}
 \text{opt} \\
 (i_0, j_0) \rightarrow (i_f, j_f) = \left\{ \begin{align*}
 &\text{opt} \\
 & (i_0, j_0) \rightarrow (i, j), (i, j) \rightarrow (i_f, j_f) \\
 \end{align*} \right\}
 \end{align*}
 \]
In real-life
Finding an optimal path

- Optimal path to \((i_k, j_k)\):

\[
D_{\min}(i_k, j_k) = \min_{i_{k-1}, j_{k-1}} D_{\min}(i_k - 1, j_k - 1) + d(i_k, j_k | i_k - 1, j_k - 1)
\]

- Smaller search!

- Local/global constraints
 - Limited transitions
 - Nodes we never visit
Example run

- Global constraints
 - bold dots
- Local constraints
 - Black lines
- Optimal path
 - Blue line
Making this work for speech

- Define a distance function
- Define local constraints
- Define global constraints
Distance function

- Given our robust feature we can use a simple measure like Euclidean distance

\[d(i, j) = \| \mathbf{f}_1(i) - \mathbf{f}_2(j) \| \]
Global constraints

- Define a ratio that is reasonable
Local constraints

- Monotonicity
 \[i_{k-1} \leq i_k \quad j_{k-1} \leq j_k \]
 - repeat but don’t go back

- This enforces time order
 - don’t get “cat” from “act”
More local constraints

• Define acceptable paths
 – Application dependent

(a) (b) (c) (d)
Toy data run

Local Constraint

Input 1

Input 2

Distance matrix

Cost matrix
Speech example with same input
Same with similar utterance
Ditto, different input
A simple yes/no recognizer

- Training phase
 - Collect data to use as prototypes

- Design phase
 - Figure out the best settings for features/DTW

- Evaluation phase
 - Test on data
Training phase

- Collect template data
Design Phase

- Select features/distance
 - Use spectrograms and Euclidean distance

- Global constraints
 - Don’t bother with ridiculous ratios

- Local constraints
 - Use only 0/+1 steps
Test Phase

- Try with different utterances
 - Normal speech
 - Slow speech
 - Fast speech

- Classify according to distances between the input and the templates
A basic speech recognizer

- Collect template spoken words $T_i(t)$
- Get their DTW distances from input $x(t)$
 - Smallest distance wins
Recognizing digits

DTW-derived distances

![Heatmap of DTW-derived distances](image)
And that’s all there is

• This is the basis if simple speech systems
 – Yes/no prompts, simple digit recognizers (e.g. in banks), phone calls by name

• Simple example-based idea
 – No need to learn about language/phonetics
 – But not very powerful in the end
Clustering Time Series

- How do we cluster time series?
 - We can’t just use k-means …

- We can use DTW for this
Getting time series distances

• Compare all pairs of samples using DTW and obtain a distance $d(i,j)$ between them
Converting distances to points

- Find points x to solve the problem:

$$\min_{x_1,\ldots,x_N} \sum_{i,j} \left[\| x_i - x_j \| - d(i, j) \right]^2$$

- This is called Multidimensional Scaling (MDS)

- Resulting points simulate the data that has the prescribed distances
 - So we can use these instead
Resulting points

Yes
No
One more application of DTW

- Synchronization of time series
- Remember that DTW gives us temporal correspondence as well
Where that’s useful
What we can do

• Use noisy audio from original take as template

• Compare to actor’s overdub take

• Find how to warp the second take to make it synchronized with original take
Example case

• Noisy audio, good video take
Using straight overdubbing

- Second take, clean audio 🎧
- Joining the two isn’t good
DTW to the rescue

• Find optimal path in order to line up the two sequences

• Local constraints are now specific
 – Must maintain the timing of the video input
Using DTW alignment
Recap

• Learning with time series
• Dynamic Time Warping
• Some basic speech recognition
• Other applications of DTW