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Today’s lecture 

•  Audio Features 

•  How we hear sound 

•  How we represent sound 
–  In the context of this class 



Why features? 

•  Features are a very important area 
–  Bad features make problems unsolvable 
– Good features make problems trivial 

•  Learning how to pick features is the key 
–  So is understanding what they mean 



A simple example 

•  Compare two numbers: 

x,y = {3,3}         x,z = {3,100}



A simple example 

•  Compare two numbers:  

–  x,y similar but x,z not so much 

•  Best way to represent a number is itself! 

x −y = 0          x − z = 97
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Moving up a level 

•  Compare two vectors: 

x,y x,z



Moving up a level 

•  Compare two vectors: 

–  Simply generalizing numbers concept 

∠x,y = 0.03 rad       ∠x,z = 0.7 rad
x−y = 0.16          x− z = 1.07



Moving up again 

•  Compare two longer vectors: 
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Look similar but are not! 

•  Oops! ∠x,y = 1.57 rad,    x−y = 7.64



How about this? 

•  Are these two vectors the same? 

 

– Not if you look at their norm or angle … 

1 2 3 4 5 6 7
x 104

−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1 2 3 4 5 6 7
x 104

−1

−0.5

0

0.5



Data norms won’t get you far! 

•  You need to articulate what matters 
–  You need to know what matters 

•  Features are the means to do so 

•  Let’s examine what matters to our ears 
– Our bodies sorta know best 



Hearing 

•  Sounds and hearing 

•  Human hearing aspects 
–  Physiology and psychology 

•  Lessons learned 



The hardware 
(outer/middle ear) 

Outer ear Middle ear 

Pinna 

Ear canal 

Ear drum 

•  The pinna (auricle) 
–  Aids sound collection 
–  Does directional filtering 
–  Holds earrings, etc … 

•  The ear canal 
–  About 25mm x 7mm  
–  Amplifies sound at ~3kHz by ~10dB 
–  Helps clarify a lot of sounds! 

•  Ear drum 
–  End of middle ear, start of inner ear 
–  Transmits sound as a vibration to the inner ear 



More hardware 
(inner ear) 

•  Ear drum (tympanum) 
–  Excites the ossicles (ear bones) 

•  Ossicles 
–  Malleus (hammer), incus (anvil), stapes (stirrup) 
–  Transfers vibrations from ear drum to the oval window 
–  Amplify sound by ~14dB (peak at ~1kHz) 
–  Muscles connected to ossicles control the acoustic 

reflex (damping in presence of loud sounds) 

•  The oval window 
–  Transfers vibrations to the cochlea 

•  Eustachian tube 
–  Used for pressure equalization Ear drum 

Eustachian 
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Ossicles 
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The cochlea 
•  The “A/D converter” 

–  Translates oval window vibrations to a 
neural signal 

–  Fluid filled with the basilar membrane in 
the middle 

–  Each section of the basilar membrane 
resonates with a different sound 
frequency 

–  Vibrations of the basilar membrane 
move sections of hair cells which send 
off neural signals to the brain 

•  The cochlea acts like the equalizer 
display in your stereo 

–  Frequency domain decomposition 
•  Neural signals from the hair cells go to 

the auditory nerve  

Microscope photograph of hair cells (yellow) 



Masking & Critical bands 
•  When two different sounds excite the same 

section of the basilar membrane one is masked 
•  This is observed at the micro-level 

–  E.g. two tones at 150Hz and 170Hz, if one tone is 
loud enough the other will be inaudible 

–  A tone can also hide a noise band when loud 
enough 

•  There are 24 distinct bands throughout the 
cochlea 

–  a.k.a critical bands 
–  Simultaneous excitation on a band by multiple 

sources results in a single source percept 
•  There is also some temporal masking 

–  Preceding sounds mask what’s next 
•  This is a feature which is taken into advantage 

by a lot of audio compression 
–  Throws away stuff you won’t hear due to masking Masking for close  

frequency tones vs 
distant tones 



The neural pathways 
•  A series of neural stops 
•  Cochlear nuclei 

–  Prepping/distribution of neural data from cochlea 
•  Superior Olivary Complex 

–  Coincidence detection across ear signals 
–  Localization functions 

•  Inferior Colliculus 
–  Last place where we have most original data 
–  Probably initiates first auditory images in brain 

•  Medial Geniculate Body 
–  Relays various sound features (frequency, intensity, 

etc) to the auditory cortex 
•  Auditory Cortex 

–  Reasoning, recognition, identification, etc 
–  High-level processing 
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The limits of hearing 
•  Frequency 

–  20Hz to 20kHz (upper limit decreases 
with age/trauma) 

–  Infrasound (< 20Hz) can be felt through 
skin, also as events 

–  Ultrasound (> 20kHz) can be 
“emotionally” perceived (discomfort, 
nausea, etc) 

•  Loudness 
–  Low limit is 2x10-10 atm 
–  0dB SPL to 130dB SPL (but also 

frequency dependent) 
•  A dynamic range of 3x106 to 1! 

–  130dB SPL threshold of pain"
–  194dB SPL is definition of a shock 

wave, sounds stops!"
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Perception of loudness 
•  Loudness is subjective 

–  Perceived loudness changes with 
frequency 

–  Perception of “twice as loud” is not 
really that! 

–  Ditto for equal loudness 
•  Fletcher-Munson curves 

–  Equal loudness perception curves 
through frequencies 

•  Just noticeable difference is about 
1dB SLP 

•  1kHz to 5kHz are the loudest heard 
frequencies 

–  What the ear canal and ossicles 
amplify! 

•  Low limit shifts up with age! 



Perception of pitch 
•  Pitch is another subjective 

(and arbitrary) measure!
•  Perception of pitch doubling 

doesn’t imply doubling of Hz!
–  Mel scale is the perceptual 

pitch scale!
–  Twice as many Mels 

correspond to a perceived 
pitch doubling!

•  Musically useful range varies 
from 30Hz to 4kHz!

•  Just noticeable difference is 
about 0.5% of frequency!
–  Varies with training though!

“Pitch is that attribute of !
auditory sensation in terms !
of which sounds may be !
ordered from low to high”!
  - American National Standards Institute!



Perception of timbre 
•  Timbre is what distinguishes sounds 

outside of loudness & pitch 
–  Another bogus ANSI description 

•  Timbre is dynamical and can have 
many facets which can often include 
pitch and loudness variations 

–  E.g. music instrument identification is 
guided largely by intensity fluctuations 
through time 

•  There is not a coherent body of 
literature examining human timbre 
perception 

–  But there is a huge bibliography on 
computational timbre perception! 

Examples of successive timbre 
changes.  Loudness and pitch 

are constant 

Gray’s timbre space of 
musical instruments 



So how to we use all that? 

•  All these processes are meaningful 
–  They encapsulate statistics of sounds 
–  They suggest features to use 

•  To make machines that cater to our needs 
– We need to learn from our perception 



A lesson from the cochlea 

•  Sounds are not vectors 

•  Sounds are “frequency 
ensembles” 

•  That’s the “perceptual 
feature” we care about 



Like this! 

 
 

–  But how do we get this? 



The “simplest” sound 

•  Sinusoids are special 
–  Simplest waveform 
–  An isolated frequency 

•  A sinusoid has three 
parameters 

–  Frequency, amplitude & phase 
•  s(t) = a(t) sin( f t + φ) 

•  This simplicity makes 
sinusoids an excellent 
building block for most of 
time series 
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Frequency domain representation 

•  Time series can be decomposed 
in terms of “sinusoid presence” 

–  See how many sinusoids you can 
add up to get to a good 
approximation 

–  Informally called the spectrum 
•  No temporal information in this 

representation, only frequency 
information 

–  So a sine with a changing 
frequency is a smeared spike 

•  Not that great of a representation 
for dynamically changing sounds 
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Time/frequency representation 

•  Many names/varieties 
–  Spectrogram, sonogram, 

periodogram, … 
•  A time ordered series of 

frequency compositions 
–  Can help show how things move 

in both time and frequency 
•  The most useful representation 

so far! 
–  Reveals information about the 

frequency content without 
sacrificing the time info 
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A real example 
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•  Time domain 
–  We can see the events 
–  We don’t know how they 

sound like though! 

•  Spectrum 
–  We can see a lot of bass 

and few middle freqs 
–  But where in time are they? 

•  Spectrogram 
–  We can “see” each 

individual sound 
–  And we know how it 

sounds like! 
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The Discrete Fourier Transform 

•  So how do we get from 
time domain to frequency 
domain? 

–  It is a matrix multiplication (a 
rotation in fact) 

•  The Fourier matrix is 
square, orthogonal and has 
complex-valued elements 

•  Multiply a vectorized time-
series with the Fourier 
matrix and voila! 

The Fourier matrix (real part) 
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How does the DFT work? 

•  Multiplying with the Fourier matrix 
–  We dot product each Fourier row vector 

with the input 
–  If two vectors point the same way their 

dot product is maximized 
•  Each Fourier row picks out a single 

sinusoid from the signal 
–  In fact a complex sinusoid 
–  Since all the Fourier sinusoids are 

orthogonal there is no overlap 
•  The resulting vector contains how 

much of each Fourier sinusoid the 
original vector had in it 



The DFT in a little more detail 
•  The DFT features complex numbers 

–  Doesn’t have to, but it is convenient for 
other things 

•  The DFT result for real signals is 
conjugate symmetric 

–  The middle value is the highest 
frequency (Nyquist) 

–  Working towards the edges we traverse 
all frequencies downwards 

–  The two sides are mutually conjugate 
complex numbers 

•  The interesting parts of the DFT are the 
magnitude and the phase 

–  Abs( F) = || F || 
–  Arg( F) = ∡ F 

•  To go back we apply the DFT again 
(with some scaling) 

Real and imaginary parts of the DFT of a sine 

Corresponding magnitude and phase 
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Size of a DFT 

•  The bigger the DFT 
input the more 
frequency resolution 

–  But the more data we 
need! 

•  Zero padding helps 
–  Stuff a lot of zeros at the 

end of the input to make 
up for few data 

–  But we don’t really 
infuse any more 
information we just 
make prettier plots 



From the DFT to a spectrogram 

•  The spectrogram is a series of consecutive 
magnitude DFTs on a signal 

–  This series is taken off consecutive 
segments of the input 

•  It is best to taper the ends of the segments 
–  This reduces “fake” broadband noise 

estimates 
•  It is wise to make the segments overlap 

–  Due to windowing 
•  The parameters to use are 

–  The DFT size 
–  The overlap amount 
–  The windowing function 
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Why window?  

•  Discontinuities at ends 
cause noise 

–  Start and end point must 
taper to zero 

•  Windowing 
–  Eliminates the sharp edges 

that cause broadband noise 
•  Overlap 

–  Since we have windowed 
we need to take 
overlapping segments to 
make up for the attenuated 
parts of the input 
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Time/Frequency tradeoff 

•  Heisenberg’s uncertainty principle 
–  We can’t accurately know both the 

frequency and the time position of a 
wave 

–  Also in particle physics with speed 
and position of a particle 

•  Spectrogram problems 
–  Big DFTs sacrifice temporal resolution 
–  Small DFTs have lousy frequency 

resolution 
•  We can use a denser overlap to 

compensate 
–  Ok solution, not great 



The Fast Fourier Transform (FFT) 
•  The Fourier matrix is special 

–  Many repeating values 
–  Unique repeating structure 

•  We can decompose a Fourier transform to 
two Fourier transforms of half the size 

–  Also includes some twiddling with the data 
–  Two Fourier smaller transforms are faster 

than one big one 
–  We keep decomposing it until we have a 

very small DFT 
•  This results into a really fast algorithm that 

has driven communications forward! 
–  The constraint is that the transform size is 

best if a power of two so that we can 
decompose it repeatedly 

The Fourier matrix, N = 32 

Example FFT, N = 8 



Emulating the cochlea 

•  Using the time/frequency domain 
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•  Take successive 
Fourier transforms 

•  Keep their 
magnitude 

•  Stack them in time 

•  Now you can visually 
compare sounds! 



Back to our example 
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Corresponding spectrograms 
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A lesson from loudness perception 

•  We don’t perceive loudness linearly 

•  How much louder is the second “test”? 

•  The magnitude we plot should be 
logarithmic, not linear 



Log spectrograms 
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A lesson from pitch perception 

•  Frequencies are not “linear” 
–  Perceived scale is called mel 

•  Use that spacing instead 
–  i.e. warp the frequency axis 



“Mel spectra” 
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One more trick 

•  Mel cepstra 
–  Smooth the log mel spectra using one more 

frequency transform (the DCT) 
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Adding some temporal info 

•  Deltas and delta-deltas 
–  In sounds order is important 
– Using “delta features” we pay attention to change 
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What more is there? 

•  Tons! 
–  Spectral features 
– Waveform features 
– Higher level features 
–  Perceptual parameter features 
– … 



Sound recap 

•  Go to time/frequency domain 
– We do so in the cochlea 

•  Frequencies are not linear 
– We perceive them in another scale 

•  Amplitude is not linear either 
– Use log scale instead 

•  Resulting features are used a lot 
–  Further minor tweaks exist (more later) 



Next lecture 

•  Principal Component Analysis 

•  How to find features automatically 

•  How to “compress” data without info loss 


