Principal Component Analysis

CS498

Today's lecture

Adaptive Feature Extraction

Principal Component Analysis
 – How, why, when, which

A dual goal

Find a good representation
 The features part

Reduce redundancy in the data
 A side effect of "proper" features

Example case

• Describe this input

What about now?

A "good feature"

- "Simplify" the explanation of the input
 - Represent repeating patterns
 - When defined makes the input simpler
- How do we define these abstract qualities?
 On to the math ...

Linear features

$\mathbf{Z} = \mathbf{W}\mathbf{X}$

A 2D case

Defining a goal

- Desirable feature features
 Give "simple" weights
 - Avoid feature similarity
- How do we define these?

One way to proceed

• "Simple weights"

- Minimize relation of the two dimensions

- "Feature similarity"
 - Same thing!

One way to proceed

- "Simple weights"
 - Minimize relation of the two dimensions
 - Decorrelate: $\mathbf{z}_1^T \mathbf{z}_2 = 0$
- "Feature similarity"
 - Same thing!
 - Decorrelate: $\mathbf{w}_1^T \mathbf{w}_2 = 0$

Diagonalizing the covariance

Covariance matrix

$$\operatorname{Cov}(\mathbf{z}_{1}, \mathbf{z}_{2}) = \begin{bmatrix} \mathbf{z}_{1}^{T} \mathbf{z}_{1} & \mathbf{z}_{1}^{T} \mathbf{z}_{2} \\ \mathbf{z}_{2}^{T} \mathbf{z}_{1} & \mathbf{z}_{2}^{T} \mathbf{z}_{2} \end{bmatrix} / N$$

- Diagonalizing the covariance suppresses cross-dimensional co-activity
 - if \mathbf{z}_1 is high, \mathbf{z}_2 won't be, etc

$$\operatorname{Cov}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right) = \begin{bmatrix} \mathbf{z}_{1}^{T} \mathbf{z}_{1} & \mathbf{z}_{1}^{T} \mathbf{z}_{2} \\ \mathbf{z}_{2}^{T} \mathbf{z}_{1} & \mathbf{z}_{2}^{T} \mathbf{z}_{2} \end{bmatrix} / N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}$$

Problem definition

- For a given input ${\bf X}$

- Find a feature matrix ${\bf W}$

• So that the weights decorrelate

$$(\mathbf{W}\mathbf{X})(\mathbf{W}\mathbf{X})^T = N\mathbf{I} \Rightarrow \mathbf{Z}\mathbf{Z}^T = N\mathbf{I}$$

How do we solve this?

• Any ideas?

 $(\mathbf{W}\mathbf{X})(\mathbf{W}\mathbf{X})^T = N\mathbf{I}$

Solving for diagonalization

$(\mathbf{W}\mathbf{X})(\mathbf{W}\mathbf{X})^T = N\mathbf{I} \Rightarrow$ $\Rightarrow \mathbf{W}\mathbf{X}\mathbf{X}^T\mathbf{W}^T = N\mathbf{I} \Rightarrow$ $\Rightarrow \mathbf{W}\mathrm{Cov}(\mathbf{X})\mathbf{W}^T = \mathbf{I}$

Solving for diagonalization

- Covariance matrices are positive definite
 - Therefore symmetric
 - have orthogonal eigenvectors and real eigenvalues
 - and are factorizable by:

 $\mathbf{U}^{ \mathrm{\scriptscriptstyle T}} \mathbf{A} \mathbf{U} = \Lambda$

– Where ${\bf U}$ has eigenvectors of ${\bf A}$ in its columns

 $-\Lambda{=}{\rm diag}(\lambda_i)$, where λ_i are the eigenvalues of ${\bf A}$

Solving for diagonalization

- The solution is a function of the eigenvectors U and eigenvalues $\Lambda\,$ of ${\rm Cov}(X)$

$$\mathbf{W} \operatorname{Cov} \left(\mathbf{X} \right) \mathbf{W}^{T} = \mathbf{I} \Rightarrow$$
$$\Rightarrow \mathbf{W} = \begin{bmatrix} \sqrt{\lambda_{1}} & 0 \\ 0 & \sqrt{\lambda_{2}} \end{bmatrix}^{-1} \mathbf{U}^{T}$$

So what does it do?

- Input data covariance: $\operatorname{Cov}(\mathbf{X}) \approx \begin{vmatrix} 14.9 & 0.05 \\ 0.05 & 1.08 \end{vmatrix}$
- Extracted feature matrix: $\mathbf{W} \approx \begin{vmatrix} 0.12 & -30.4 \\ -8.17 & -0.03 \end{vmatrix} / N$
- Weights covariance: $Cov(WX) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Another solution

- This is not the only solution to the problem
- Consider this one:

$$(\mathbf{W}\mathbf{X})(\mathbf{W}\mathbf{X})^T = N\mathbf{I} \Rightarrow$$

 $\mathbf{W}\mathbf{X}\mathbf{X}^T\mathbf{W}^T = N\mathbf{I} \Rightarrow$
 $\mathbf{W} = (\mathbf{X}\mathbf{X}^T)^{-1/2}$

Another solution

- This is not the only solution to the problem
- Consider this one:

$$(\mathbf{W}\mathbf{X})(\mathbf{W}\mathbf{X})^T = N\mathbf{I} \Rightarrow$$

 $\mathbf{W}\mathbf{X}\mathbf{X}^T\mathbf{W}^T = N\mathbf{I} \Rightarrow$

 Similar but out of scope for now

$$egin{aligned} \mathbf{W} &= \left(\mathbf{X}\mathbf{X}^T
ight)^{-1/2} \Rightarrow \ \mathbf{W} &= \mathbf{U}\mathbf{S}^{-1/2}\mathbf{V}^T \ \left[\mathbf{U},\mathbf{S},\mathbf{V}
ight] &= \mathrm{SVD}ig(\mathbf{X}\mathbf{X}^Tig) \end{aligned}$$

Decorrelation in pictures

- An implicit Gaussian assumption
 - -N-D data has N directions of variance

Input Data

Undoing the variance

• The decorrelating matrix W contains two vectors that normalize the input's variance

Resulting transform

 Input gets scaled to a well behaved Gaussian with unit variance in all dimensions

A more complex case

- Having correlation between two dimensions
 - We still find the directions of maximal variance
 - But we also rotate in addition to scaling

One more detail

- So far we considered zero-mean inputs
 - The transforming operation was a rotation
- If the input mean is not zero bad things happen!
 - Make sure that your data is zero-mean!

Principal Component Analysis

- This transform is known as PCA
 - The features are the principal components
 - They are orthogonal to each other
 - And produce orthogonal (white) weights
 - Major tool in statistics
 - Removes dependencies from multivariate data
- Also known as the KLT
 - Karhunen-Loeve transform

A better way to compute PCA

The Singular Value Decomposition way

 $[\mathbf{U}, \mathbf{S}, \mathbf{V}] = \mathrm{SVD}(\mathbf{A}) \Rightarrow \mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}}$

- Relationship to eigendecomposition
 - In our case (covariance input ${\bf A}$), ${\bf U}$ and ${\bf S}$ will hold the eigenvectors/values of ${\bf A}$
- Why the SVD?
 - More stable, more robust, fancy extensions

PCA through the SVD

Dimensionality reduction

• PCA is great for high dimensional data

- Allows us to perform dimensionality reduction
 - Helps us find relevant structure in data
 - Helps us throw away things that won't matter

A simple example

- Two very correlated dimensions
 - e.g. size and weight of fruit
 - One effective variable
- PCA matrix here is:

$$\mathbf{W} = \begin{bmatrix} -0.2 & -0.13 \\ -13.7 & 28.2 \end{bmatrix}$$

- Large variance between the two components
 - about two orders of magnitude

A simple example

- Second principal component needs to be super-boosted to whiten the weights
 - maybe is it useless?
- Keep only high variance
 - Throw away components with minor contributions

What is the number of dimensions?

- If the input was *M* dimensional, how many dimensions do we keep?
 - No solid answer (estimators exist but are flaky)

Look at the singular/eigen-values

 They will show the variance of each component, at some point it will be small

Example

- Eigenvalues of 1200 dimensional video data
 - Little variance after component 30
 - We don't need to keep the rest of the data

So where are the features?

- We strayed off-subject
 - What happened to the features?
 - We only mentioned that they are orthogonal

- We talked about the weights so far, let's talk about the principal components
 - They should encapsulate structure
 - How do they look like?

Face analysis

- Analysis of a face database
 - What are good features for faces?
- Is there anything special there?
 - What will PCA give us?
 - Any extra insight?
- Lets use MATLAB to find out ...

The Eigenfaces

Low-rank model

 Instead of using 780 pixel values we use the PCA weights (here 50 and 5)

3

Mean Face

-985.953

2

2

655.408

4

229.737

5

-227.179

OF ILLINOIS AT URBANA-CHAMPAIGN

PCA for large dimensionalities

Sometimes the data is high dim
 e.g. videos 1280x720xT = 921,600D x T frames

You will not do an SVD that big!
 – Complexity is O(4m²n + 8mn² + 9n³)

• Useful approach is the EM-PCA

EM-PCA in a nutshell

- Alternate between successive approximations
 - Start with random C and loop over:

 $\mathbf{Z} = \mathbf{C}^+ \mathbf{X}$

$\mathbf{C}=\mathbf{X}\mathbf{Z}^{+}$

- After convergence ${\bf C}$ spans the PCA space
- If we choose a low rank C then computations are significantly more efficient than the SVD
 - More later when we cover EM

PCA for online data

- Sometimes we have too many data samples
 - Irrespective of the dimensionality
 - e.g. long video recordings
- Incremental SVD algorithms
 - Update the $\mathbf{U}, \mathbf{S}, \mathbf{V}$ matrices with only a small set or a single sample point
 - Very efficient updates

A Video Example

- The movie is a series of frames
 - Each frame is a data point
 - 126, 80x60 pixel frames
 - Data will be 4800x126
- We can do PCA on that

PCA Results

Component weights

PCA for online data II

- "Neural net" algorithms
- Naturally online approaches
 - With each new datum, PC's are updated
- Oja's and Sanger's rules
 - Gradient algorithms that update $\ensuremath{\mathbf{W}}$
- Great when you have minimal resources

PCA and the Fourier transform

We've seen why sinusoids are important
 But can we statistically justify it?

PCA has a deep connection with the DFT
 In fact you can derive the DFT from PCA

An example

- Let's take a time series which is not "white"
 - Each sample is somewhat correlated with the previous one (Markov process)

$$\left[\begin{array}{cc} x(t), & \cdots, & x(t+T) \end{array} \right]$$

• We'll make it multidimensional

$$\mathbf{X} = \begin{bmatrix} x(t) & x(t+1) \\ \vdots & \vdots & \cdots \\ x(t+N) & x(t+1+N) \end{bmatrix}$$

An example

- In this context, features will be repeating temporal patterns smaller than ${\cal N}$

$$\mathbf{Z} = \mathbf{W} \begin{bmatrix} x(t) & x(t+1) \\ \vdots & \vdots & \dots \\ x(t+N) & x(t+1+N) \end{bmatrix}$$

• If W is the Fourier matrix then we are performing a frequency analysis

PCA on the time series

 By definition there is a correlation between successive samples

$$\operatorname{Cov}(\mathbf{X}) \approx \begin{bmatrix} 1 & 1-e & \cdots & 0\\ 1-e & 1 & 1-e & \vdots\\ \vdots & 1-e & 1 & 1-e\\ 0 & \cdots & 1-e & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1-e & 1 & 1-e\\ 0 & 1 & 1-e & 1 & 1-e\\ 1 & 1 & 1-e & 1 & 1-e & 1 \end{bmatrix}$$

• Resulting covariance matrix will be symmetric Toeplitz with a diagonal tapering towards 0

Solving for PCA

• The eigenvectors of Toeplitz matrices like this one are (approximately) sinusoids

1	
2	
3	
4	
5	
2	
0	
1	
8	
9	
10	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
<u>∽</u> /	
20	
29	
30	
31	
32	

And ditto with images

Analysis of coherent images results in 2D sinusoids

So now you know

 The Fourier transform is an "optimal" decomposition for time series

 In fact you will often not do PCA and do a DFT

- There is also a loose connection with our perceptual system
 - We kind of use similar filters in our ears and eyes (but we'll make that connection later)

Recap

- Principal Component Analysis
 - Get used to it!
 - Decorrelates multivariate data, finds useful components, reduces dimensionality
- Many ways to get to it
 - Knowing what to use with your data helps
- Interesting connection to Fourier transform

Check these out for more

- Eigenfaces
 - <u>http://en.wikipedia.org/wiki/Eigenface</u>
 - <u>http://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf</u>
 - <u>http://www.cs.ucsb.edu/~mturk/Papers/jcn.pdf</u>
- Incremental SVD
 - <u>http://www.merl.com/publications/TR2002-024/</u>
- EM-PCA
 - <u>http://cs.nyu.edu/~roweis/papers/empca.ps.gz</u>

