Principal Component Analysis

CS498

Today's lecture

- Adaptive Feature Extraction
- Principal Component Analysis
- How, why, when, which

A dual goal

- Find a good representation
- The features part
- Reduce redundancy in the data
- A side effect of "proper" features

Example case

- Describe this input

What about now?

A "good feature"

- "Simplify" the explanation of the input
- Represent repeating patterns
- When defined makes the input simpler
- How do we define these abstract qualities?
- On to the math ...

Linear features

$\mathbf{Z}=\mathbf{W} \mathbf{X}$

A 2D case

Defining a goal

- Desirable feature features
- Give "simple" weights
- Avoid feature similarity
- How do we define these?

One way to proceed

- "Simple weights"
- Minimize relation of the two dimensions
- "Feature similarity"
- Same thing!

One way to proceed

- "Simple weights"
- Minimize relation of the two dimensions
- Decorrelate: $\mathbf{z}_{1}^{T} \mathbf{z}_{2}=0$
- "Feature similarity"
- Same thing!
- Decorrelate: $\mathbf{w}_{1}^{T} \mathbf{w}_{2}=0$

Diagonalizing the covariance

- Covariance matrix

$$
\operatorname{Cov}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)=\left[\begin{array}{ll}
\mathbf{z}_{1}^{T} \mathbf{z}_{1} & \mathbf{z}_{1}^{T} \mathbf{z}_{2} \\
\mathbf{z}_{2}^{T} \mathbf{z}_{1} & \mathbf{z}_{2}^{T} \mathbf{z}_{2}
\end{array}\right] / N
$$

- Diagonalizing the covariance suppresses cross-dimensional co-activity
- if \mathbf{z}_{1} is high, \mathbf{z}_{2} won't be, etc

$$
\operatorname{Cov}\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right)=\left[\begin{array}{ll}
\mathbf{z}_{1}^{T} \mathbf{Z}_{1} & \mathbf{z}_{1}^{T} \mathbf{Z}_{2} \\
\mathbf{z}_{2}^{T} \mathbf{z}_{1} & \mathbf{z}_{2}^{T} \mathbf{Z}_{2}
\end{array}\right] / N=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\mathbf{I}
$$

Problem definition

- For a given input X
- Find a feature matrix \mathbf{W}
- So that the weights decorrelate

$$
(\mathbf{W X})(\mathbf{W X})^{T}=N \mathbf{I} \Rightarrow \mathbf{Z} \mathbf{Z}^{T}=N \mathbf{I}
$$

How do we solve this?

- Any ideas?

$$
(\mathbf{W} \mathbf{X})(\mathbf{W} \mathbf{X})^{T}=N \mathbf{I}
$$

Solving for diagonalization

$$
\begin{aligned}
& (\mathbf{W X})(\mathbf{W X})^{T}=N \mathbf{I} \Rightarrow \\
& \Rightarrow \mathbf{W X X}^{T} \mathbf{W}^{T}=N \mathbf{I} \Rightarrow \\
& \Rightarrow \mathbf{W} \operatorname{Cov}(\mathbf{X}) \mathbf{W}^{T}=\mathbf{I}
\end{aligned}
$$

Solving for diagonalization

- Covariance matrices are positive definite
- Therefore symmetric
- have orthogonal eigenvectors and real eigenvalues
- and are factorizable by:

$$
\mathbf{U}^{T} \mathbf{A} \mathbf{U}=\Lambda
$$

- Where \mathbf{U} has eigenvectors of \mathbf{A} in its columns
$-\Lambda=\operatorname{diag}\left(\lambda_{i}\right)$, where λ_{i} are the eigenvalues of \mathbf{A}

Solving for diagonalization

- The solution is a function of the eigenvectors \mathbf{U} and eigenvalues $\boldsymbol{\Lambda}$ of $\operatorname{Cov}(\mathbf{X})$

$$
\begin{aligned}
& \mathbf{W} \operatorname{Cov}(\mathbf{X}) \mathbf{W}^{T}=\mathbf{I} \Rightarrow \\
& \Rightarrow \mathbf{W}=\left[\begin{array}{cc}
\sqrt{\lambda_{1}} & 0 \\
0 & \sqrt{\lambda_{2}}
\end{array}\right]^{-1} \mathbf{U}^{T}
\end{aligned}
$$

So what does it do?

- Input data covariance: $\operatorname{Cov}(\mathbf{X}) \approx\left[\begin{array}{ll}14.9 & 0.05 \\ 0.05 & 1.08\end{array}\right]$
- Extracted feature matrix: $\mathbf{w} \approx\left[\begin{array}{cc}0.12 & -30.4 \\ -8.17 & -0.03\end{array}\right] / N$
- Weights covariance: $\operatorname{Cov}(\mathbf{W} \mathbf{X})=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Another solution

- This is not the only solution to the problem
- Consider this one: $(\mathbf{W X})(\mathbf{W X})^{T}=N \mathbf{I} \Rightarrow$

$$
\mathbf{W} \mathbf{X} \mathbf{X}^{T} \mathbf{W}^{T}=N \mathbf{I} \Rightarrow
$$

$$
\mathbf{W}=\left(\mathbf{X X}^{T}\right)^{-1 / 2}
$$

Another solution

- This is not the only solution to the problem
- Consider this one: $(\mathbf{W X})(\mathbf{W X})^{T}=N \mathbf{I} \Rightarrow$

$$
\mathbf{W X X}^{T} \mathbf{W}^{T}=N \mathbf{I} \Rightarrow
$$

- Similar but out of scope for now

$$
\begin{aligned}
& \mathbf{W}=\left(\mathbf{X X}^{T}\right)^{-1 / 2} \Rightarrow \\
& \mathbf{W}=\mathbf{U S}^{-1 / 2} \mathbf{V}^{T} \\
& {[\mathbf{U}, \mathbf{S}, \mathbf{V}]=\operatorname{SVD}\left(\mathbf{X X}^{T}\right)}
\end{aligned}
$$

Decorrelation in pictures

- An implicit Gaussian assumption
- N-D data has N directions of variance

Input Data

Undoing the variance

- The decorrelating matrix \mathbf{W} contains two vectors that normalize the input's variance

Resulting transform

- Input gets scaled to a well behaved Gaussian with unit variance in all dimensions

Transformed Data (feature weights)

A more complex case

- Having correlation between two dimensions
- We still find the directions of maximal variance
- But we also rotate in addition to scaling

Transformed Data (feature weights)

One more detail

- So far we considered zero-mean inputs
- The transforming operation was a rotation
- If the input mean is not zero bad things happen!
- Make sure that your data is zero-mean!

Input Data

Transformed Data (feature weights)

Principal Component Analysis

- This transform is known as PCA
- The features are the principal components
- They are orthogonal to each other
- And produce orthogonal (white) weights
- Major tool in statistics
- Removes dependencies from multivariate data
- Also known as the KLT
- Karhunen-Loeve transform

A better way to compute PCA

- The Singular Value Decomposition way

$$
[\mathbf{U}, \mathbf{S}, \mathbf{V}]=\operatorname{SVD}(\mathbf{A}) \Rightarrow \mathbf{A}=\mathbf{U S V}^{T}
$$

- Relationship to eigendecomposition
- In our case (covariance input A), U and S will hold the eigenvectors/values of \mathbf{A}
- Why the SVD?
- More stable, more robust, fancy extensions

PCA through the SVD

Weight Matrix

Feature Matrix Eigenvalue matrix Weight Matrix

Dimensionality reduction

- PCA is great for high dimensional data
- Allows us to perform dimensionality reduction
- Helps us find relevant structure in data
- Helps us throw away things that won't matter

A simple example

- Two very correlated dimensions
- e.g. size and weight of fruit
- One effective variable
- PCA matrix here is:

$$
\mathbf{W}=\left[\begin{array}{cc}
-0.2 & -0.13 \\
-13.7 & 28.2
\end{array}\right]
$$

- Large variance between the two components
- about two orders of magnitude

A simple example

- Second principal component needs to be super-boosted to whiten the weights
- maybe is it useless?
- Keep only high variance
- Throw away components with minor contributions

What is the number of dimensions?

- If the input was M dimensional, how many dimensions do we keep?
- No solid answer (estimators exist but are flaky)
- Look at the singular/eigen-values
- They will show the variance of each component, at some point it will be small

Example

- Eigenvalues of 1200 dimensional video data
- Little variance after component 30
- We don't need to keep the rest of the data

So where are the features?

- We strayed off-subject
- What happened to the features?
- We only mentioned that they are orthogonal
- We talked about the weights so far, let's talk about the principal components
- They should encapsulate structure
- How do they look like?

Face analysis

- Analysis of a face database
- What are good features for faces?
- Is there anything special there?
- What will PCA give us?
- Any extra insight?
- Lets use MATLAB to find out ...

The Eigenfaces

I I L L I N O I S

Low-rank model

- Instead of using 780 pixel values we use the PCA weights (here 50 and 5)

Full Approximation

PCA for large dimensionalities

- Sometimes the data is high dim
- e.g. videos $1280 \times 720 \times T=921,600 \mathrm{D} \times \mathrm{T}$ frames
- You will not do an SVD that big!
- Complexity is $\mathrm{O}\left(4 m^{2} n+8 m n^{2}+9 n^{3}\right)$
- Useful approach is the EM-PCA

EM-PCA in a nutshell

- Alternate between successive approximations - Start with random C and loop over:

$$
\begin{aligned}
& \mathbf{Z}=\mathbf{C}^{+} \mathbf{X} \\
& \mathbf{C}=\mathbf{X Z}^{+}
\end{aligned}
$$

- After convergence C spans the PCA space
- If we choose a low rank \mathbf{C} then computations are significantly more efficient than the SVD
- More later when we cover EM

PCA for online data

- Sometimes we have too many data samples
- Irrespective of the dimensionality
- e.g. long video recordings
- Incremental SVD algorithms
- Update the U,S,V matrices with only a small set or a single sample point
- Very efficient updates

A Video Example

- The movie is a series of frames
- Each frame is a data point
- 126, 80x60 pixel frames
- Data will be 4800x126
- We can do PCA on that

PCA Results

Video Component 1 Video Component 2 Video Component 3

Component weights

PCA for online data II

- "Neural net" algorithms
- Naturally online approaches
- With each new datum, PC's are updated
- Oja's and Sanger's rules
- Gradient algorithms that update W
- Great when you have minimal resources

PCA and the Fourier transform

- We've seen why sinusoids are important - But can we statistically justify it?
- PCA has a deep connection with the DFT
- In fact you can derive the DFT from PCA

An example

- Let's take a time series which is not "white"
- Each sample is somewhat correlated with the previous one (Markov process)

$$
\left[\begin{array}{lll}
x(t), & \cdots, & x(t+T)
\end{array}\right]
$$

- We'll make it multidimensional

$$
\mathbf{X}=\left[\begin{array}{ccc}
x(t) & x(t+1) & \\
\vdots & \vdots & \cdots \\
x(t+N) & x(t+1+N) &
\end{array}\right]
$$

An example

- In this context, features will be repeating temporal patterns smaller than N

$$
\mathbf{Z}=\mathbf{W}\left[\begin{array}{ccc}
x(t) & x(t+1) & \\
\vdots & \vdots & \cdots \\
x(t+N) & x(t+1+N) &
\end{array}\right]
$$

- If \mathbf{W} is the Fourier matrix then we are performing a frequency analysis

PCA on the time series

- By definition there is a correlation between successive samples

$$
\operatorname{Cov}(\mathbf{X}) \approx\left[\begin{array}{cccc}
1 & 1-e & \cdots & 0 \\
1-e & 1 & 1-e & \vdots \\
\vdots & 1-e & 1 & 1-e \\
0 & \cdots & 1-e & 1
\end{array}\right]=
$$

- Resulting covariance matrix will be symmetric Toeplitz with a diagonal tapering towards 0

Solving for PCA

- The eigenvectors of Toeplitz matrices like this one are (approximately) sinusoids

And ditto with images

- Analysis of coherent images results in 2D sinusoids

So now you know

- The Fourier transform is an "optimal" decomposition for time series
- In fact you will often not do PCA and do a DFT
- There is also a loose connection with our perceptual system
- We kind of use similar filters in our ears and eyes (but we'll make that connection later)

Recap

- Principal Component Analysis
- Get used to it!
- Decorrelates multivariate data, finds useful components, reduces dimensionality
- Many ways to get to it
- Knowing what to use with your data helps
- Interesting connection to Fourier transform

Check these out for more

- Eigenfaces
- http://en.wikipedia.org/wiki/Eigenface
- http://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf
- http://www.cs.ucsb.edu/~mturk/Papers/jcn.pdf
- Incremental SVD
- http://www.merl.com/publications/TR2002-024/
- EM-PCA
- http://cs.nyu.edu/~roweis/papers/empca.ps.gz

