Segmenting images and
mean shift

D.A. Forsyth

Segmenting 1mages

® Why?
® To find “chunks” of image that have meaning
® possibly objects
® Because pixels are too small to work with individually
® and most pixels are like their neighbors
® To compress the image

Example segmentations

FIGURE 9.17: On the left, an image of mixed vegetables, which is segmented using k-means
to produce the images at center and on the right. We have replaced each pixel with the
mean value of its cluster; the result is somewhat like an adaptive requantization, as one
would expect. In the center, a segmentation obtained using only the intensity information.
At the right, a segmentation obtained using color information. Each segmentation assumes

five pliictore

FIGURE 9.16: Segmentation results from the watershed algorithm, applied to an image
by Martin Brigdale. Center: watershed applied to the image intensity; notice some long
superpixels. Right: watershed applied to image gradient magnitude; this tends to produce
rounder superpixels. Martin Brigdale (¢) Dorling Kindersley, used with permission.

FIGURE 9.21: Segmentations of images obtained using the mean shift algorithm. This
figure was originally published as Figure 10 of “Mean Shift: A Robust Approach Toward

Feature Space Analysis,” by D. Comaniciu and P. Meer, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2002 (¢) IEEFE, 2002.

5 [RN

O 2 N

7 Yy, e L
- W2

(h, b)~(16,8)

(h,, h)=(8, 16)

FIGURE 9.20: Animage (top left) and mean shift modes obtained with different clustering
scales for space h; and appearance h,. If h; is small, the method must produce clusters
that are relatively small and compact spatially because the kernel function smoothes over
a relatively small radius and so will allow many distinct modes. If h, is small, the clusters
are compact in appearance; this means that small h, and large h, will produce small,
blobby clusters that could span a range of appearances, whereas large hs and small h, will
tend toward spatially complex and extended clusters with a small range of appearances.
Cluster boundaries will try harder to follow level curves of intensity. This figure was
originally published as Figure 5 of “Mean Shift: A Robust Approach Toward Feature Space
Analysis,” by D. Comaniciu and P. Meer, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2002 (©) IEEE, 2002.

FIGURE 9.22: Images segmented using Algorithm 9.8, shown next to segments. Figures
obtained from http://people.cs.uchicago.edu/~pff/segment/, by kind permission of
Pedro Felzenszwalb.

Example applications

® [.abel images by:
® segment regions
® compute region description
® vector quantize region descriptions
® now have a translation problem
® solve
® [abel new image with translation table

. Cat 0.05
Cat)
Cat 0.5
. Forest =
Tiger Cat 0.05
- (Grass Forest 0.4
Tiger 0.05
e \ Grass 0.4 :
Sea Sea0.025 | s
Sky Sky 0.025
O s Sun0.025 |2
\ Waves. Waves 0.025

FIGURE 21.13: Duygulu et al. (2002) generate annotations for images by segmenting the
image (left) and then allowing each sufficiently large segment to generate a tag. Segments
generate tags using a lexicon (right), a table of conditional probabilities for each tag
given a segment. They learn this lexicon by abstracting each annotated image as a bag of
segments and tags (center). If we had a large number of such bags, and knew which tag
corresponded to which segment, then building the lexicon just involves counting; similarly,
if we knew the lexicon, we could estimate which tag corresponded to which segment in
each bag. This suggests using an EM method to estimate the lexicon. This figure was
originally published as Figure 1 of “Object Recognition as Machine Translation: Learning
a lexicon for a fired image vocabulary,” by P. Duygulu, K. Barnard, N. deFreitas, and
D. Forsyth, Proc. European Conference on Computer Vision. Springer Lecture Notes in
Computer Science, Volume 2353, 2002 (¢) Springer, 2002.

Superpixels

® “Chunks” of image larger than a pixel
® coherent interior

® (Can do shape reasoning
® For example, people are made out of long thin superpixels

FIGURE 9.14: Superpixels often can expose structure in images that other representations
conceal. Human body segments tend to appear as long, thin segments. In the top row,
an image together with three different edge maps (the edge detector of Section 5.2.1,
with two scales of smoothing, and the P, of Section 17.1.3) and superpixels computed
at two “scales” (in this case, the number of superpixels was constrained). Notice that
the coarser superpixels tend to expose limb segments in a straightforward way. On the
bottom row, another image, its superpixels, and two versions of the body layout inferred
from the superpixel representation. This figure was originally published as Figure 3 and
part of Figure 10 of “Recovering human body configurations: Combining Segmentation and
Recognition,” by G. Mori, X. Ren, A. Efros, and J. Malik, Proc. IEEE CVPR, 2004 (¢
IEFEE, 2004.

Interactive segmentation

Cut out a region from an image

® for example, so you can move things around in a picture
® compose other pictures from pieces (collages)
® remove inconvenient people

Major practical application

In video, known as “rotoscoping”
® remove a figure from a background

® usually done with a green screen

® BUT: hair, etc create problems

Key idea:
® foreground/background models and 0/1 labels

FIGURE 9.11: A user who wants to cut an object out of an image (left) could mark some
foreground pixels and some background pixels (center), then use an interactive segmen-
tation method to get the cut out components on the right. The method produces a model
of foreground and background pixel appearance from the marked pixels, then uses this
information to decide a figure ground segmentation. This figure was originally published
as Figure 9 of “Interactive Image Segmentation via Adaptive Weighted Distances,” by
Protiere and Sapiro, IEEE Transactions on Image Processing, 2007 (¢) IEEE, 2007.

FIGURE 9.12: In a grabcut interface for interactive segmentation, a user marks a box
around the object of interest; foreground and background models are then inferred by a
clustering method, and the object is segmented. If this segmentation isn’t satisfactory,
the user has the option of painting foreground and background strokes on pixels to help
guide the model. This figure was originally published as Figure 1 of “GrabCut Interactive
Foreground FEzxtraction using Iterated Graph Cuts” by C. Rother, V. Kolmogorov, and A.
Blake, Proc. ACM SIGGRAPH, 2004 © ACM, 2004.

Matting

® Pixels very often are a weighted mixture of colors
® iep= af +(1 —a)b
® we see p, must estimate f, b and alpha
® Why?
® hair, fluff, etc. on boundary
e How?
® assume
® alpha is smooth
® f bare
® near constant
® from foreground (resp. background) model

FIGURE 9.13: Matting methods produce a real-valued mask (rather than a foreground-
background mask) to try and compensate for effects in hair, at occluding boundaries, and
so on, where some pixels consist of an average of foreground and background values. The

matte is bright for foreground pixels and dark for background pixels; for some pixels in
the hair, it is gray, meaning that when the foreground is transferred to a new image,
these pixels should become a weighted sum of foreground and background. The gray
value indicates the weight. This figure was originally published as Figure 6 of “Spectral
Matting,” by A. Levin, A. Rav-Acha, and D. Lischinski, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2008 (¢) IEEE, 2008.

Image segmentation with k-means

® Represent each pixel in the image with a vector
® intensity
® color This is the key step
® color and location
® color, location, other stuff (texture)

® (Choose distance weights
® e is color more important than location?

® Apply k-means
® Pixels belong to the segment corresponding to centers
® Different representations yield different segmentations

FIGURE 9.17: On the left, an image of mixed vegetables, which is segmented using k-means
to produce the images at center and on the right. We have replaced each pixel with the
mean value of its cluster; the result is somewhat like an adaptive requantization, as one
would expect. In the center, a segmentation obtained using only the intensity information.
At the right, a segmentation obtained using color information. Each segmentation assumes

five clusters.

Intensity

Color, k=11

FIGURE 9.18: Here we show the image of vegetables segmented with k-means, assuming a

set of 11 components. The left figure shows all segments shown together, with the mean
value in place of the original image values. The other figures show four of the segments.
Note that this approach leads to a set of segments that are not necessarily connected.
For this image, some segments are actually quite closely associated with objects, but one
segment may represent many objects (the peppers); others are largely meaningless. The
absence of a texture measure creates serious difficulties, as the many different segments
resulting from the slice of red cabbage indicate.

Color and position, k=11

FIGURE 9.19: Five of the segments obtained by segmenting the image of vegetables with a
k-means segmenter that uses position as part of the feature vector describing a pixel, now
using 20 segments rather than 11. Note that the large background regions that should be
coherent have been broken up because points got too far from the center. The individual
peppers are now better separated, but the red cabbage is still broken up because there is
Nno texture measure.

Interactive segmentation with k-means

® Simple algorithm

® current alg.s somewhat better than this

Take all known foreground pixels, do k-means
® Take all known background pixels, do k-means

® For all pixels
® find closest foreground/background center
® if closest center is foreground, pixel is foreground

® if closest center is background, pixel is background
o

Matting with k-means

® Concept algorithm

® all matters are shaky right now
® there are more complicated matters that do better than this

® Find closest foreground, background to pixel
® but these three are NOT on a straight line
® fita line
® this gives F (point on line closest to foreground)
® B (point on line closest to background)
® alpha (mixture weight)

Graph based segmentation

® Build a graph out of image
® Typically
® cach pixel is a vertex
® cdge between neighboring pixels
® cdges are weighted by similarity of pixels
® distance between representation vectors (intensity, color, etc.)

e (Cut this graph into pieces in various ways

9.4.1 Terminology and Facts for Graphs

We review terminology here very briefly, as it’s quite easy to forget.

e A graph is a set of vertices V and edges E that connect various pairs of
vertices. A graph can be written G = {V, E}. Each edge can be represented
by a pair of vertices—that is, E C V x V. Graphs are often drawn as a set
of points with curves connecting the points.

e The degree of a vertex is the number of edges incident on that vertex.

A directed graph is one in which edges (a,b) and (b,a) are distinct; such a
graph is drawn with arrowheads indicating which direction is intended.

An undirected graph is one in which no distinction is drawn between edges
(a,b) and (b, a).

A weighted graph is one in which a weight is associated with each edge.
Two edges are consecutive if they have a vertex in common.

A path is a sequence of consecutive edges.

A circuit is a path which ends at the vertex at which it begins.

A self-loop is an edge that has the same vertex at each end; self-loops don’t
occur in our applications.

Two vertices are said to be connected when there is a sequence of edges starting
at the one and ending at the other; if the graph is directed, then the arrows
in this sequence must point the right way.

A connected graph is one where every pair of vertices is connected.

A tree is a connected graph with no circuits.

e Given a connected graph G = {V, E}, a spanning tree is a tree with vertices V
and edges a subset of E. By our definition, trees are connected, so a spanning
tree is connected.

e Every graph consists of a disjoint set of connected components—that is, G =
{(ViuVa...V,, Ey UE;y...E,}, where {V;, E;} are all connected graphs and
there is no edge in E' that connects an element of V; with one of V; for i # j.

e A forest is a graph whose connected components are trees.

Graph based agglomerative clustering

Start with a set of clusters C;, one cluster per pixel.
Sort the edges in order of non-decreasing edge weight, so that
w(ey) > w(eg) > ... > w(e,).

Fori=1tor
If the edge e; lies inside a cluster
do nothing
Else
One end 1s in cluster C; and the other is in cluster C,,,
Ifdif f(C,Cr) < MInt(C;,C,p)
Merge C; and C,,, to produce a new set of clusters.

Report the remaining set of clusters.

Algorithm 9.8: Agglomerative Clustering with Graphs.

We will start with every pixel forming a cluster, then merge clusters until
there is no need to continue. To do this, we need some notion of the distance
between two clusters. Each cluster is a component of the graph, formed from all
the vertices (pixels) in the cluster, and all the edges that start and end inside the
cluster. Then the difference between two components is the minimum weight edge
connecting two components. Write Cy, Co for the two components, £ for the edges,
and w(vy,ve) for the weight of the edge joining v; and vs. Then, we have

diff(Cy,Cs) = min w(vl, v2).
v1€Cy,v2€C2,(v1,v2)EE

It is also helpful to know how coherent a particular cluster is. This will help us
stop clustering. We define the internal difference of a component to be the largest
weight in the minimum spanning tree of the component. Write M (C) = {V¢, Enr}
for the minimum spanning tree of C. Then, we have

int(C) = :
int(C) eg}%)w(e)

Comparing the edge weight to the internal difference of the clusters requires
some care, because in small clusters the internal distance might be zero (if there
is only one vertex), or implausibly small. To deal with this, Felzenszwalb and
Huttenlocher (2004) define a function of two clusters, MInt, as

MInt(Cy,Cs) = min(int(C;) + 7(Cy), int(Cz) + 7(C2))

where 7(C) is a term that biases the internal difference upward for small clusters;
Felzenszwalb and Huttenlocher (2004) use 7(C) = k/ | C |, for k some constant
parameter. This algorithm is notably fast and relatively accurate (Figure 9.22).

FIGURE 9.22: Images segmented using Algorithm 9.8, shown next to segments. Figures
obtained from http://people.cs.uchicago.edu/~pff/segment/, by kind permission of
Pedro Felzenszwalb.

Mean shift

® [dea:

® clusters are places where data points tend to be close together
® assume data are IID samples from probability distribution

® (independent, identically distributed)
® find local maxima in this probability distribution

® Problem:
® don’t know the distribution, must build a model

Building a model of the PDF

® Place a small smooth bump on top of each data point
® how big? adjust to get best model

® Add bumps, normalize
® When data are clustered, function is big

Small, smooth bumps=kernels

® write x for data, h for a scale parameter, d 1s dimension
e we’ll use a Gaussian bump (there are others)

');T (—d/2) - T 2
K(x;h) = (27) exp <_%" |)

hd

® Model of data density becomes

(Assume we know h at the moment, we’ll get to it)

Small smooth bumps, again

2m) =42 [1]z|?
]K.(lﬁ h) = -———TE;T———— exp __EE-7E__

We can simplify notation by writing k(u) = exp (—.-;-u) (this is called the

a_\(—d/2)
kernel profile) and C' = %— so that

- £Xr — I; - .
f@) oy k(1521 9.1)
i—=1

Finding a maximum

We want to find a maximum in f
® je.gradient=0

Viz)|le=y = 0
- CZVA =
- CO= Z : [

_ o2 [Zi =D
-y iy 2
> 9(1=21)

||)

)

—y] X [Zg(ll mih_

2
y|)].

. =Y 12 - .
We expect that). g(| éhﬂ |) is nonzero, so that the maximum occurs when

Fi w1 Z2T) _ y] 0
€. — 2 ?
Z:o(1 57T

Finding a maximum - II

Ti—Y 2
2izig(|==1)

Ti—1Y 42
91 =721)

—yl| =0,

Means that:

) Li—" -
Y > zig(| =2)
o 0 Ti—Y 2y
Soa(l =21

Finding a maximum - III

Start with an estimate of the mode y(”) and a set of n data vectors x;
of dimension d, a scaling constant h, and g the derivative of the kernel profile

Until the update is tiny
Form the new estimate

SO _ I i D)
S, g

Algorithm 9.5: Finding a Mode with Mean Shift.

Segmenting images with mean shift

® [. apply mean shift to pixel representations
® we expect many, quite tightly clustered, local minima
® balancing color distance and position distance differently changes results

® [I: apply k-means to local minima
® too many to be segments

® but tend to be much better clustered than pixel representations
® pixel belongs to segment whose number is number of local center

5 [RN

O 2 N

7 Yy, e L
- W2

(h, b)~(16,8)

(h,, h)=(8, 16)

FIGURE 9.20: Animage (top left) and mean shift modes obtained with different clustering
scales for space h; and appearance h,. If h; is small, the method must produce clusters
that are relatively small and compact spatially because the kernel function smoothes over
a relatively small radius and so will allow many distinct modes. If h, is small, the clusters
are compact in appearance; this means that small h, and large h, will produce small,
blobby clusters that could span a range of appearances, whereas large hs and small h, will
tend toward spatially complex and extended clusters with a small range of appearances.
Cluster boundaries will try harder to follow level curves of intensity. This figure was
originally published as Figure 5 of “Mean Shift: A Robust Approach Toward Feature Space
Analysis,” by D. Comaniciu and P. Meer, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2002 (©) IEEE, 2002.

FIGURE 9.21: Segmentations of images obtained using the mean shift algorithm. This
figure was originally published as Figure 10 of “Mean Shift: A Robust Approach Toward

Feature Space Analysis,” by D. Comaniciu and P. Meer, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2002 (¢) IEEFE, 2002.

