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Simple color features

• Histogram of image colors in a window
• Opponent color representations
• R-G
• B-Y=B-(R+G)/2
• Intensity=(R+G+B)/3

• Percentage of blue pixels
• Blue pixel map



Matlab slide



Scaled representations

• Represent one image with many different resolutions
• Why?

• find bigger, smaller swimming pools



Carelessness causes aliasing

Obtained pyramid of images by subsampling



Matlab slide: subsampling



Aliasing and fast changing signals



More aliasing examples

• Undersampled sine wave ->

• Color shimmering on striped shirts on TV
• Wheels going backwards in movies
• temporal aliasing



Another aliasing example

• location of a 
sharp 
change is  
known 
poorly
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Fundamental facts

• A sine wave will alias if sampled less often than twice per 
period
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Fundamental facts

• Sample(A+B)=Sample(A)+Sample(B)
• if a signal contains a high frequency sine wave, it will alias



0 10 20 30 40 50 60 70 80 90 100

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1



0 10 20 30 40 50 60 70 80 90 100

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1



0 10 20 30 40 50 60 70 80 90 100

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1



Weapons against aliasing

• Filtering
• or smoothing
• take the signal, reduce the fast-changing/high-frequency content
• can do this by weighted local averaging



Prefiltering (Ideal case)
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Smoothing by Averaging

Nij =
1
N

ΣuvOi+u,j+v

where u, v, is a window of N pixels in total centered at 0, 0



• A Gaussian gives a good 
model of a fuzzy blob

Smoothing with a Gaussian

• Notice “ringing” 
• apparently, a grid is 

superimposed

• Smoothing with an average 
actually doesn’t compare at 
all well with a defocussed 
lens
• what does a point of light 

produce?



Gaussian filter kernel

Kuv =
�

1
2πσ2

�
exp

�
−

�
u2 + v2

�

2σ2

�

We’re assuming the index can take negative values



Nij =
�

uv

Oi−u,j−vKuv Notice the curious looking form

Smoothing with a Gaussian



Matlab slide: convolution in 2D



Linear Filters

• Example: smoothing by averaging
• form the average of pixels in a neighbourhood

• Example: smoothing with a Gaussian
• form a weighted average of pixels in a neighbourhood

• Example:  finding a derivative
• form a weighted average of pixels in a neighbourhood



Finding derivatives

Nij =
1

∆x
(Ii+1,j − Iij)



• Each of these involves a weighted sum of image pixels
• The set of weights is the same 
• we represent these weights as an image, H
• H is usually called the kernel

• Operation is called convolution
• it’s associative

• Any linear shift-invariant operation can be represented by 
convolution
• linear:  G(k f)=k G(f)
• shift invariant:  G(Shift(f))=Shift(G(f))
• Examples: 
• smoothing, differentiation, camera with a reasonable, defocussed lens 

system

Convolution

Nij =
�

uv

HuvOi−u,j−v



Filters are templates

• At one point
• output of convolution is a (strange) dot-product

• Filtering the image involves a dot product at each point
•  Insight 
• filters look like the effects they are intended to find
• filters find effects they look like

Nij =
�

uv

HuvOi−u,j−v



Smoothing reduces noise

• Generally expect pixels to “be like” their neighbours
• surfaces turn slowly
• relatively few reflectance changes

• Expect noise to be independent from pixel to pixel
• Implies that smoothing suppresses noise, for appropriate noise models

• Scale
• the parameter in the symmetric Gaussian
• as this parameter goes up, more pixels are involved in the average
• and the image gets more blurred
• and noise is more effectively suppressed

Kuv =
�

1
2πσ2
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�
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Representing image changes: Edges

• Idea:
• points where image value change very sharply are important

• changes in surface reflectance
• shadow boundaries
• outlines

• Finding Edges:
• Estimate gradient magnitude using appropriate smoothing
• Mark points where gradient magnitude is

• Locally biggest and
• big



Matlab slide:  gradients



Matlab slide: smoothed gradients



1 pixel 3 pixels 7 pixels

Scale affects derivatives



Scale affects gradient magnitude



Smoothing and Differentiation

• Issue:  noise
• smooth before differentiation
• two convolutions to smooth, then differentiate?
• actually, no - we can use a derivative of Gaussian filter



Matlab slide: orientations and arrow plots







Matlab slide: rose plots





Hog features

• Take a window
• subdivide into boxes, each with multiple pixels
• these might overlap

• for each box, build a histogram of gradient orientations
• possibly weighting by distance from center
• possibly normalizing by intensity over the box

• string these histograms together to a vector

• Extremely strong at spatial coding





Vlfeat pointer



Image HOG features Positive terms
in linear classifier

Negative terms
in linear classifier


