Image features:
Histograms, Aliasing,

Filters, Orientation
and HOG

D.A. Forsyth

Simple color features

Histogram of image colors in a window

Opponent color representations
e R-G

e B-Y=B-(R+G)/2

¢ Intensity=(R+G+B)/3

Percentage of blue pixels
Blue pixel map

cd('~/Current/Courses/CS-498-DAF-PS/MatlabCode/ImageFeatures"');
pool=imread('mypool.jpg’);

bush=imread('bush.jpg’);

lawn=imread('lawn.jpg');

%

rspool=double(reshape(pool, size(pool, 1l)*size(pool, 2), 3));
rsbush=double(reshape(bush, size(bush, 1)*size(bush, 2), 3));
rslawn=double(reshape(lawn, size(lawn, 1l)*size(lawn, 2), 3));
figure(1l);

plot3(rspool(:, 1), rspool(:, 2), rspool(:, 3), 'r*');

hold on

plot3(rsbush(:, 1), rsbush(:, 2), rsbush(:, 3), "g*’
plot3(rslawn(:, 1), rslawn(:, 2), rslawn(:, 3), 'b*’

a

$ notice all the blue pixels

%
o

% some other color representations

rgpool=reshape(double(pool(:, :, 1))-double(pool(:, :, 2)), size(pool,
size(pool, 2));

bypool=reshape(double(pool(:, :, 3))-(double(pool(:, :, 2))+double(pool
(:, ¢, 1)))/2,size(pool, 1), size(pool, 2));
intpool=reshape(double(sum(pool, 3)), size(pool, 1), size(pool, 2));
figure(5); imshow([rgpool, bypool, intpool]);
rgs=max(max(abs(rgpool)));

bys=max(max(abs(bypool)));

ints=max(max(abs(intpool)));

figure(6); imshow([(rgpool+rgs)/(2*rgs), (bypool+bys)/(2*bys), intpool/
ints]);

rglawn=reshape(double(lawn(:, :, 1))-double(lawn(:, :, 2)), size(lawn,
size(lawn, 2));

bylawn=reshape(double(lawn(:, :, 3))-(double(lawn(:, :, 2))+double(lawn
(:, =, 1)))/2,size(lawn, 1), size(lawn, 2));
intlawn=reshape(double(sum(lawn, 3)), size(lawn, 1), size(lawn, 2));
figure(2); imshow([rglawn, bylawn, intlawn]);
rgs=max(max(abs(rglawn)));

bys=max(max(abs(bylawn)));

ints=max(max(abs(intlawn)));

figure(3); imshow([(rglawn+rgs)/(2*rgs), (bylawn+bys)/(2*bys), intlawn/
ints]);

Scaled representations

e Represent one image with many different resolutions
e Why?

¢ find bigger, smaller swimming pools

Carelessness causes aliasing

Obtained of images by subsampling

Matlab slide: subsampling

cd('~/Current/Courses/CS-498-DAF-PS/MatlabCode/ImageFeatures"');
wind=imread('satpic.jpg');

windsmall=wind(1l:16:size(wind, 1), 1l:16:size(wind, 2),
winds2=imresize(wind, 1/16);

figure(l); clf; hold off; imshow(windsmall);

figure(2); clf; hold off; imshow(winds2);

Aliasing and fast changing signals

el
=

More aliasing examples

e Undersampled sine wave ->

e (Color shimmering on striped shirts on TV

e Wheels going backwards in movies
e temporal aliasing

Another aliasing example

e Jocation of a i
sharp
change 1s
known
poorly

Fundamental facts

e A sine wave will alias if sampled less often than twice per
period

Fundamental facts

e Sample(A+B)=Sample(A)+Sample(B)

e if a signal contains a high frequency sine wave, it will alias

Weapons against aliasing

e Filtering
® or smoothing

® take the signal, reduce the fast-changing/high-frequency content
e can do this by weighted local averaging

Prefiltering (Ideal case)

Continuous Sampling Discrete Reconstruction Continuous
Image Samples Image

] ./

Sampling Reconstruction
Function Kernel

where u, v, is a window of N pixels in total centered at 0, O

Smoothing with a Gaussian

e Notice “ringing”
® apparently, a grid is
superimposed

¢ Smoothing with an average
actually doesn’t compare at
all well with a defocussed
lens

e what does a point of light A Gaussian gives a good
produce? model of a fuzzy blob

Gaussian filter kernel

ERWNEIES)

We’re assuming the index can take negative values

Smoothing with a Gaussian

Notice the curious looking form

Matlab slide: convolution in 2D

kerl=fspecial('gaussian’', 9,

figure(1l); imshow(kerl);

figure(2); imshow(kerl/max(max(kerl)));

ker2=fspecial('gaussian’', 21, 4);

figure(3); imshow(ker2);

figure(4); imshow(ker2/max(max(ker2)));

spi=double(reshape(sum(wind, 3), size(wind, 1), size(wind, 2)))/(3*256);
smlsp=conv2(spi, kerl, ‘same’);

sm2sp=conv2(spi, ker2, ‘same’);

figure(5); imshow([spi, smlsp, sm2sp]);

Iinear Filters

¢ Example: smoothing by averaging
¢ form the average of pixels in a neighbourhood

¢ Example: smoothing with a Gaussian
¢ form a weighted average of pixels in a neighbourhood

e Example: finding a derivative
¢ form a weighted average of pixels in a neighbourhood

Finding derivatives

Convolution

Each of these involves a weighted sum of image pixels

The set of weights is the same
* we represent these weights as an image, H
e H is usually called the kernel

Operation is called convolution
® it’s associative
Any linear shift-invariant operation can be represented by
convolution
¢ Jlinear: G(k)=k G(f)
¢ shift invariant: G(Shift(f))=Shift(G(1))
e Examples:
* smoothing, differentiation, camera with a reasonable, defocussed lens

system
N'L'j — E Huvoi—u,j—v
uv

Filters are templates

Nij — Z Hquz’—u,j—v

e At one point

* output of convolution is a (strange) dot-product
e Filtering the image involves a dot product at each point
* Insight

o filters look like the effects they are intended to find
¢ filters find effects they look like

Smoothing reduces noise

¢ Generally expect pixels to “be like” their neighbours

surfaces turn slowly
relatively few reflectance changes

¢ EXxpect noise to be independent from pixel to pixel

Implies that smoothing suppresses noise, for appropriate noise models

e Scale

the parameter in the symmetric Gaussian
as this parameter goes up, more pixels are involved in the average

and the image gets more blurred
and noise is more effectively suppressed
1 — [u? + v?]
exp 52

Representing image changes: Edges

o Jdea:

points where image value change very sharply are important
* changes in surface reflectance

e shadow boundaries

e outlines

* Finding Edges:

Estimate gradient magnitude using appropriate smoothing
Mark points where gradient magnitude is

e Locally biggest and

* big

Matlab slide: gradients

zebra=imread('zebra.jpg');
zebrai=double(reshape(sum(zebra, 3), size(zebra, 1), size(zebra, 2)))/
(3%256);

zebrasli=conv2(zebrai, kerl, 'same');
zebras2i=conv2(zebrai, ker2, 'same’');

[zix, ziy]=gradient(zebrai);

[zislx, zisly]=gradient(zebrasli);

[zis2x, zis2y]=gradient(zebras2i);
zigm=sqrt(zix.”"2+ziy."2);
zigslm=sqrt(zislx."2+zisly."2);
zigs2m=sqrt(zis2x."2+zis2y."2);

figure(6); imshow(zigm/max(max(zigm)));
figure(7); imshow(zigslm/max(max(zigslm)));
figure(8); imshow(zigs2m/max(max(zigs2m)));

Matlab slide: smoothed gradients

zebra=imread('zebra.jpg');
zebrai=double(reshape(sum(zebra, 3), size(zebra, 1), size(zebra, 2)))/
(3%256);

zebrasli=conv2(zebrai, kerl, 'same');
zebras2i=conv2(zebrai, ker2, 'same’');

[zix, ziy]=gradient(zebrai);

[zislx, zisly]=gradient(zebrasli);

[zis2x, zis2y]=gradient(zebras2i);
zigm=sqrt(zix.”"2+ziy."2);
zigslm=sqrt(zislx."2+zisly."2);
zigs2m=sqrt(zis2x."2+zis2y."2);

figure(6); imshow(zigm/max(max(zigm)));
figure(7); imshow(zigslm/max(max(zigslm)));
figure(8); imshow(zigs2m/max(max(zigs2m)));

Scale affects derivatives

3 pixels 7 pixels

Scale affects gradient magnitude

Smoothing and Differentiation

e Jssue: noise
¢ smooth before differentiation
* two convolutions to smooth, then differentiate?
e actually, no - we can use a derivative of Gaussian filter

Matlab slide: orientations and arrow plots

step=7;

xw=[1l:size(zix, 1)];

yw=[1l:size(zix, 2)];

figure(9); clf;

imshow(zebrai);

hold on;

axis image;

quiver(yw(l:step:size(zix, 2)), ...
xw(l:step:size(zix, 1)), ...
zix(l:step:size(zix, 1), l:step:size(zix, 2)),...
ziy(l:step:size(zix, 1), l:step:size(zix, 2)));

b 107 L B o e S gt e 0 L

\ VRN O VRS RN VRN WO VO T Y—— =~ |

~
-

FIGURE 5.7: The magnitude of the image gradient changes when one increases or decreases
the intensity. The orientation of the image gradient does not change; we have plotted every
10th orientation arrow, to make the figure easier to read. Note how the directions of the

gradient arrows are fixed, whereas the size changes. Philip Gatward (¢) Dorling Kindersley,
used with permission.

..............

.............

o . YGL ML bt et Tt et vt it e Y i

Semland et bl ot ol e bl .

Al ’ -

FIGURE 5.8: The scale at which one takes the gradient affects the orientation field. We
show the overall trend of the orientation field by plotting a rose plot, where the size of a
wedge represents the relative frequency of that range of orientations. Left shows an image
of artists pastels at a fairly fine scale; here the edges are sharp, and so only a small set of
orientations occurs. In the heavily smoothed version on the right, all edges are blurred
and corners become smooth and blobby; as a result, more orientations appear in the rose
plot. Philip Gatward (¢) Dorling Kindersley, used with permission.

Matlab slide: rose plots

figure(10);
rose(reshape(atan2(ziy, zix), prod(size(zix)), 1));

FIGURE 5.9: Different patterns have quite different orientation histograms. The left shows
rose plots and images for a picture of artists pastels at two different scales; the right shows
rose plots and images for a set of pastels arranged into a circular pattern. Notice how the
pattern of orientations at a particular scale, and also the changes across scales, are quite
different for these two very different patterns. Philip Gatward (¢) Dorling Kindersley, used

with permission.

Hog features

e Take a window
¢ subdivide into boxes, each with multiple pixels
® these might overlap
e for each box, build a histogram of gradient orientations
® possibly weighting by distance from center
® possibly normalizing by intensity over the box
e string these histograms together to a vector

¢ Extremely strong at spatial coding

¥
*1
tes
25

rr

-

D e
:nﬂ"'"ﬂ E
P P RN s
rreesres
e—

bt 4

&2

3
4

>
e
+44

FIGURE 5.15: The HOG features for each the two images shown here have been visualized

by a version of the rose diagram of Figures 5.7-5.9. Here each of the cells in which the
histogram is taken is plotted with a little rose in it; the direction plotted is at right angles
to the gradient, so you should visualize the overlaid line segments as edge directions.
Notice that in the textured regions the edge directions are fairly uniformly distributed,
but strong contours (the gardener, the fence on the left; the vertical edges of the french
windows on the right) are very clear. This figure was plotted using the toolbox of Dollar
and Rabaud. Left: (¢) Dorling Kindersley, used with permission. Right: Geoff Brightling
© Dorling Kindersley, used with permission.

We have sketched the most important feature constructions, but there is a huge
range of variants. Performance is affected by quite detailed questions, such as the
extent of smoothing when evaluating orientations. Space doesn’t allow a detailed

survey of these questions (though there’'s some material in Section 5.6), and the

answers seem to change fairly frequently, too. This means we simply can’t supply
accurate recipes for building each of these features.

Fortunately, at time of writing, there are several software packages that pro-
vide good implementations of each of these feature types, and of other variations.
Piotr Dollar and Vincent Rabaud publish a toolbox at http://vision.ucsd.
edu/~pdollar/toolbox/doc/index.html; we used this to generate several figures.
VLFeat is a comprehensive open-source package that provides SIFT features, vec-
tor quantization by a variety of methods, and a variety of other representations.
At time of writing, it could be obtained from http://www.vlfeat.org/. SIFT
features are patented (Lowe 2004), but David Lowe (the inventor) provides a refer-
ence object code implementation at http://www.cs.ubc.ca/"lowe/keypoints/.
Navneet Dalal, one of the authors of the original HOG feature paper, provides
an implementation at http://www.navneetdalal.com/software/. One variant
of SIFT is PCA-SIFT, where one uses principal components to reduce the di-
mension of the SIFT representation (Ke and Sukthankar 2004). Yan Ke, one
of the authors of the original PCA-SIFT paper, provides an implementation at
http://www.cs.cmu.edu/~yke/pcasift/. Color descriptor code, which computes
visual words based on various color SIFT features, is published by van de Sande et
al. at http://koen.me/research/colordescriptors/.

Negative terms
in linear classifier

3)
mpﬂ
7
o
O
28
o O
2 5
= o
N =
o .=
Pl
i
o p—

HOG features

FHT-{!I-«...L].-LF.L &4
SEgSEFTF IS8

i |

