Classification:
- Input: Features, output: one bit
- (more complicated models later)

Example:
- Input: height
- Output: gender

- For the moment, assume that σ^ϕ are evenly distributed.
- How would one classify?
 - Choose a height threshold
 - Mistakes are inevitable
 - We need to choose the least expensive.
Notice guaranteed error

we will get these θ's wrong.

we will get these σ's wrong.
Strategy

\(h > t \uparrow \sigma \)

otherwise \(\varnothing \)

Cases:

- males, females equally common \(t \at x \)
- males very common, \(\sigma \)'s rare \(t \ll x \)
- \(\sigma \) rare, \(\varnothing \) common \(t \gg x \)

Q: reasonable way to set \(t \)

Choose \(t \) to produce the minimum expected cost of errors.

- two types of error

 \((\sigma \rightarrow \varnothing) \)

 \((\varnothing \rightarrow \sigma) \)

We assume a reward for right answer is 0.
we have a feature \(x \).

If we say \(\phi \), we get \(h(\phi \rightarrow \phi) \) wrong.

If we do this many times, we get \(\phi \) with frequency \(P(\phi | x) \).

and \(h(\phi \rightarrow \phi) \) with freq \(P(\phi | x) \).

So expected loss of \(\phi \) is \(0 \cdot P(\phi | x) + h(\phi \rightarrow \phi) \cdot P(\phi | x) \).

Similarly, expected loss of \(\phi \) is \(0 \cdot P(\phi | x) + h(\phi \rightarrow \phi) \cdot P(\phi | x) \).
so in principle we have a rule

\[
\text{cost of } \varphi \text{ is: } L(\varphi \rightarrow \varphi) p(\varphi | x)
\]

at \(x\),

\[
\text{cost of } \sigma^1 \text{ is: } L(\varphi \rightarrow \sigma^1) p(\sigma^1 | x)
\]

choose the least expensive, say that.

But where do we get \(p(\sigma^1 | x), p(\varphi | x)\)?

1) \(p(\varphi | x) = 1 - p(\sigma^1 | x)\)

(only 2 options)

2) \(p(\sigma^1 | x) = \frac{p(x | \sigma^1) p(\sigma^1)}{p(x)}\)

\[
= \frac{p(x | \sigma^1) p(\sigma^1)}{\left[p(x | \sigma^1) p(\sigma^1) + p(x | \varphi) p(\varphi) \right]}
\]

We could read this off the histograms.
We can now build one useful form of classifier.

- measure \(p(x | \phi) \), \(p(\phi) = \pi \),

 (say, histogram)

- Say

\[\phi \leftrightarrow o \] if \(L(\phi \rightarrow o) \cdot p(\phi | x) > L(o \rightarrow \phi) \cdot p(o | x) \).

\(\phi \leftrightarrow o \)

 doesn't matter

 now, consider

\[L(\phi \rightarrow o) \cdot p(\phi | x) = L(o \rightarrow \phi) \cdot p(o | x) \]

all that matters is

\[R = \frac{L(\phi \rightarrow o)}{L(o \rightarrow \phi)} \]
So we care about

$$R \cdot p(\varphi | x) = p(\sigma^\top | x)$$

i.e.

$$R \cdot \frac{p(x | \varphi)}{p(x | \sigma^\top)} \frac{p(\sigma^\top)}{p(x)} = \frac{p(x | \sigma^\top)}{p(x)} \frac{(1-\Pi)}{\Pi} \cdot \frac{1}{R}$$

i.e.

$$\frac{p(x | \varphi)}{p(x | \sigma^\top)} = \frac{(1-\Pi)}{\Pi} \cdot \frac{1}{R} \Rightarrow \text{likelihood ratio}$$

i.e. if

$$\frac{p(x | \varphi)}{p(x | \sigma^\top)} > q(\Pi, R) \Rightarrow \varphi$$

doesn't matter say \varphi

say \sigma
Now equations give a way to determine \(Q \) but we can manage without.

Rule:

\[
p(x|q) > t, \text{ say } q
\]

\[
\frac{p(x|q)}{p(x|0^q)}
\]

Plot errors \(v \) varying \(t \)

Receiver operating curve.

Plot for different \(t \).
Model: We are trying to detect 0^\dagger's in a population of 1^\dagger's (or vice versa).

$$P\text{ (false det.)} = \frac{\# \text{ of } 1^\dagger\text{'s we called } 0^\dagger\text{'s}}{\# \text{ of times we classified}}$$

$$P\text{ (true det.)} = \frac{\# \text{ of } 0^\dagger\text{'s we called } 0^\dagger\text{'s}}{\# \text{ of } 0^\dagger\text{'s in population}}$$

We evaluate this on test data.

Training:

- Form histograms $p(x|\theta)$ etc.
- Can be hard to do with high dimensional x.
Major Problem:
- a 1-D histogram w/ n cells in each dir has n^2 cells
- 2D
- 3D
- dD

We cannot build such histograms:

Strategies:
- Simplify the model
- Search for decision boundary directly
- Search for decision boundary directly
Simplify model

model

\[p(x_1, x_2, \ldots, x_n \mid \theta) = p(x_1 \mid \theta) p(x_2 \mid \theta) \ldots p(x_n \mid \theta) \]

This model is usually wrong. But it's convenient and works surprisingly well.

Naive Bayes:

Method: one histogram each in each direction.

- form likelihood ratio
- test against threshold.
B) model $p(q|x)$ directly.
- parametric models, perhaps later

C) Find decision boundary:
- by continuity reasoning (Nearest neighbours)
- by search

Nearest neighbours:

alg:
- find $x_i \in$ examples such that
 \[\|x_i - x\| \text{ is smallest} \]
- class of x is class of x_i
k-Nearest Neighbors:

Algorithm:
- Find the k examples that are closest to x.
- Find the most common class in these neighbors.
- If there are k in this class, classify x with that class; otherwise, don't know.

Properties:
- With enough examples, error rate is no more than 2^x best possible.
- We must worry about scaling dimension.
- Algorithmically complex.
model \(P(\theta|x) \) directly

(we'll talk about this later)

Find decision boundary directly

- recall

- eg in 2D

- Hard to search for a curve in 2D or more-D
Easy, highly successful strategy.

The decision boundary is a flat hyperplane:

\[
\begin{align*}
(w^T x + b) > 0 & \text{ class 1} \\
= 0 & \\
< 0 & \text{ class 2}
\end{align*}
\]
clearly, this won't work always

\[(x, y) \rightarrow (x^2, y^2) \]
again

\[(x, y) \rightarrow (x^2, xy, y^2, x, y) \]

But (recall general ellipse is)

\[ax^2 + bxy + cy^2 + dx + ey + f = 0 \]

and we get linear boundary.

General principle here:

With enough features a linear classifier will behave well.
How to choose a linear classifier

Q: What is w, b?

A: Minimize loss of using classifier.

x-side

T-side

$w^T x + b = 0$

might become bad with small change.
Good choice, closest examples should be as far away as possible.

We need to deal with easy cases.
\[\text{dist} = \frac{|w^T x + b|}{||w||} \]

- hence, if loss is zero, we would like to minimize \(||w||^2 \)
- if loss is non-zero, small \(||w||^2 \) is a good idea
- Hence minimize

\[\text{loss} + \theta ||w||^2 \]

↑ weighting parameter choose later
Logistic loss:

\[\text{log} \left[\frac{1}{1 + \exp(-y \cdot \hat{y})} \right] \]

\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n \]

\[\text{log} \left[\frac{1}{1 + \exp(-y \cdot \hat{y})} \right] \]

leads to

\[w \approx \text{argmin} \sum_i \left[y_i \log \hat{y}_i + (1 - y_i) \log (1 - \hat{y}_i) \right] \]
loss:
- Consider an example of class 1
- We want $w^T x + b > 0$

\[w^T x + b \]

- For $w^T x + b > 0$, loss = 0
- For $w^T x + b < 0$, loss is big
- For $w^T x + b \leq 0$, bigger

- Loss should not grow too fast, otherwise one example dominates
- Loss should be non-zero for small $w^T x + b$
Hinge loss:

- Example has label \(y_i \in \{1, -1\} \)
- We predict \(y_i^p = \mathbf{w}^T \mathbf{x}_i + b \)
- Loss is \(\max \{0, 1 - y_i \cdot y_i^p\} \)
- Plotted above for \(y_i = 1 \)
- Leads to
 \[
 \min_{\mathbf{w}, b} \|\mathbf{w}\|^2 + \sum_i \max\{0, 1 - y_i \cdot y_i^p\}
 \]
 which is hard.