Classifiers in Practice

D.A. Forsyth
Rough draft of assignment

• Make an estimate of density of swimming pools per square kilometre for a suburb
• Check this estimate
• Use risk to modify your estimate
General procedure

• Get labelled data
 • pairs \((x_i, y_i)\), where \(x\) is feature vector, \(y\) label

• Split into 3 groups
 • Training (big)
 • Validation (smaller)
 • Test (small)

• Use software to train on training
 • for different values of theta
 • evaluate on validation; choose best theta

• Now evaluate on test
Evaluation

- Rough numbers
 - good for validation
 - Total error rate
 - % of classification attempts that get wrong answer (ideally, small)
 - Performance
 - % of classification attempts that get right answer (ideally, big)

- More detailed statistics
 - broader picture of performance
 - Recall
 - \(\frac{\text{number of true positives labelled true}}{\text{total number of true positives}} \)
 - Precision
 - \(\frac{\text{number of true positives labelled true}}{\text{total number labelled true}} \)
Turning a classifier into a detector

- **Procedure**
 - Sweep boxes over the image
 - compute features
 - present to classifier

- **Questions**
 - How big a step between boxes?
 - experiment
 - Blurred response
 - non-maximum suppression
Many good codes available

- **LIBSVM**
 - this implements a linear classifier
 - you can call from Matlab
 - easy script and examples on web page

- **SVMLight**
 - tends to be aimed at sophisticated users
 - complex interface
 - extremely accurate, and will do anything
 - http://svmlight.joachims.org/

- **VLFeat**
 - has a solver, VL_PEGASOS, which implements what I described in class
 - http://www.vlfeat.org/