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Recall:  Dynamic Programming

• We had to choose a set of discrete variables to minimize a 
cost function

• We did this by building a cost-to-go function
• recursively
• at X_(n-1)=cost of best path leaving X_n-1
• at X_k= best of (cost of leaving X_k+cost to go(X_k+1))

u1(X1) + b12(X1, X2) + u2(X2) + b23(X2, X3) + u3(X3) + ...un(Xn)



Human parsing

• We are given an image
• We have a model of a person

• head+torso
• head+torso+upper+lower arms
• head+torso+upper+lower arms+legs
• more, perhaps
• could be 2D or 3D

• We know a bunch of stuff about this model
• eg color of each segment
• eg how segments join up

• We must report configuration of the model



Applications

• Kinect



Simplest case

• Model 
• 2D
• segments are image rectangles of known size
• we know the color of the segments
• we have two cost functions

• segment to image match
• eg sum of squared color differences

• segment to segment compatibility
• eg ends are close; possibly angles
• in a tree (more details to follow)

• Matching = dynamic programming



Building a trellis

• Simple cases
• head+torso

• one column each
• entries in the column are image rectangles
• picture just like the texture picture

• head+torso+two upper arms
• one column per segment
• entries are image rectangles
• picture only slightly more interesting, because we have a tree



In notation

• We have variables X1..Xn
• one per body segment
• each can be mapped to an image rectangle
• for the moment, assume they form a chain

• eg head+torso; head+torso+upper+lower leg
• trees will be easy, as above

• We have a cost function
• with a special form (for the case of a chain)

• We seek



In notation -II: the cost to go function

• We have for the chain function:

• Define the cost-to-go function by

• this is the base of a recursion!

• Notice that

• is the same as (except for Xn, which is missing)



In notation -III: the cost-to-go function-II



In notation - IV

So



Dynamic programming for a chain



Heavily simplified tracking model

• We have a moving object, and want to trace its path
• Two sources of information

• Measurement
• actual, but unknown, position in k’th image is x_k (2D, continuous)
• measured position in k’th image is m_k (2D, continuous)

• very close to actual position
• m_k=x_k+(tiny position error)

• far more complex models are possible
• Dynamics

• it isn’t moving much
• i.e. x_k+1=x_k+(tiny position change)

• far more complex models are possible



In equations

xk+1 = xk + ζk

mk = xk + ηk

tiny position change
scale is σp

tiny position change
scale is σm

Motion constraint

Measurement constraint



Finding the path

• To find the path, we must choose x_1, ..., x_n to minimize
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Building a cost-to-go function

• Terms involving x_n:

• Maximize with respect to x_n
• set gradient wrt x_n to zero
• rearrange
• get
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We can substitute back
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And do this again and again...

• To get some c(x_1)
• minimize this
• substitute x_1 in expression for x_2

• x_2 in expression for x_3
• ...
• x_n-1 in expression for x_n

• This is a dynamic program, too

• Can be extended to:
• more complex state models
• more complex measurement models
• more complex dynamic models

• Result:  The Kalman Filter



Reminder







DP works for forests



Some issues 

• How do you deal with two legs?
• or two arms?
• or, rather, how do you ensure the match has two?

“Efficient Matching of Pictorial Structures,” by P. Felzenszwalb and D.P. Huttenlocher, 
Proc. IEEE CVPR 2000, c 2000, IEEE.



What if you don’t know the color?

• Easy answer for video:
• look for lateral walking view with a classifier
• read off appearance of arms, legs, etc
• feed into model; now detect in each frame



Build and detect models
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Ramanan, Forsyth and Zisserman CVPR05



Ramanan, Forsyth and Zisserman CVPR05



Ramanan, Forsyth and Zisserman CVPR05



What if you don’t know the color? - II

• Hard answer for static images:
• guess color; parse; reestimate color; reparse; and so on



Guessing the color

From Ramanan, 03



Iterating

From Ramanan, 03



Iterating

From Ramanan, 03



This is a search

• And we can prune it
• It’s easy to detect torso’s accurately
• the arms can get only so far from the torso



Pruned search



But dynamic programming fails

• We’ve already seen that getting two arms/legs is an issue
• which we ducked, somewhat

• Our model is wrong
• arms tend to have the same color
• legs tend to have the same color
• this means there should be terms in the cost function that link left/right
• this breaks dp



Breaking dp - I

• Cost function for a chain of three variables:

• Picture:

u1(X1) + b12(X1, X2) + u2(X2) + b23(X2, X3) + u3(X3)

X X X
1 2 3



Breaking dp

• New picture
X

X X

1

2 3

u1(X1) + b12(X1, X2) + u2(X2) + b23(X2, X3) + u3(X3) + b13(X1, X3)



Breaking dp - III

• Try to build a cost-to-go function:
• eliminate X3
• but now our cost-to-go function depends on X1 and X2
• so no benefit! 

• We need to check all triples!

u1(X1) + b12(X1, X2) + u2(X2) + b23(X2, X3) + u3(X3) + b13(X1, X3)



Breaking dp - IV

Tran and Forsyth 10



All sorts of pictures

X

X X

4

5 6

X

X X

1

2 3

X

X X

9

7 8

Could you do dynamic programming here?

Not in terms of X1...X9

but in terms of G1, G2, G3
G1=(X1, X2, X3)
G2=(X4, X5, X6)
G3=(X7, X8, X9)



Strategy for non-dp cases

• Approximation
• true answer is intractable

• Strategy:
• Fix some u’s, to make a chain
• do dp
• now fix different u’s, iterate

• One of many possible strategies
• question is very rich



Tran+Forsyth, 10



Important points

• Human parsing is useful
• Can do with dp
• Can lead to models where you can’t maximize with dp

• or can’t maximize efficiently

• What to do is an “algorithms” question
• Approximate algorithms exist

• Hard questions
• “best” approximate algorithm
• quality of approximation


