Cute Tricks with
Dynamic Programming:
Tracking and Parsing

D.A. Forsyth

Recall: Dynamic Programming

® We had to choose a set of discrete variables to minimize a
cost function

u1(X1) + b12(X1, Xo) + ua(X2) + bas(Xa, X3) + us(X3) + ...un(Xy)

® We did this by building a cost-to-go function
® recursively
® at X_ (n-1)=cost of best path leaving X_n-1
® at X_k= best of (cost of leaving X_k+cost to go(X_k+1))

Human parsing

We are given an image

We have a model of a person
head+torso
head+torso+upper+lower arms
head+torso+upper+lower arms-+legs

more, perhaps
could be 2D or 3D

We know a bunch of stuff about this model

® cg color of each segment
® cg how segments join up

We must report configuration of the model

Applications

® Kinect

Simplest case

® Model
2D
segments are image rectangles of known size
we know the color of the segments
we have two cost functions
® secgment to image match
® cg sum of squared color differences
® segment to segment compatibility
® cg ends are close; possibly angles
® in a tree (more details to follow)

® Matching = dynamic programming

Building a trellis

® Simple cases

® head+torso
® one column each
® entries in the column are image rectangles
® picture just like the texture picture

® head+torso+two upper arms
® one column per segment
® entries are image rectangles
® picture only slightly more interesting, because we have a tree

In notation

® We have variables X1..Xn

® one per body segment

® cach can be mapped to an image rectangle

® for the moment, assume they form a chain
® cg head+torso; head+torso+upper+lower leg
® trees will be easy, as above

® We have a cost function
® with a special form (for the case of a chain)

i=n i=n—1
fchain(‘x—l s e ‘X—n) — 'zt‘i(A",-) + b,-('Xl-, ‘X—i -+ 1)

i

Il
—
Il
—

® We seek

argmax

Xi,..., X, Jehain(X1:---Xn)

In notation -II: the cost to go function

We have for the chain function:

fehain(X1, .-, Xn) =) ui(Xi) + bi(X, X + 1)

Define the cost-to-go function by

-(n—1)
f cost-to-go

(AXn -1) = Il{gl,}(bn—l (}X’n -1, ‘Xn) + Un (-Xn)

® this is the base of a recursion!

Notice that

argmax . :

Xi,...,X, Jchain(X1:--,Xn)

® is the same as (except tor Xn, which 1S missing)

argmax

> . (n—1) - -
Xi,...,. Xn_1 (f chain(X1,- - Xn—1) Jeost-to-go(Xn-1)) ’

In notation -III: the cost-to-go function-II

which means that we can eliminate the nth variable from the optimization by
replacing the term b,,_1 (X, _1, Xy)+upn (X,) with a function of X,,_;. This function
is obtained by maximizing this term with respect to X,,. Equivalently, assume
we must choose a value for X,,_;. The cost-to-go function tells us the value of
bn_1(Xn_1,Xn) + un(X,) obtained by making the best choice of X,, conditioned
on our choice of X,,_1. Because any other choice would not lead to a maximum, if
we know the cost-to-go function at X,,_1, we can now compute the best choice of
X, —1 conditioned on our choice of X,,_o. This yields that

max_ [bp_o(Xpn_2, Xn_1) + tun_1(Xn — 1) + bp_1(Xn_1, Xpn) + un(Xy)]

n—1,/\n

is equal to

max |bp_o(Xpn_o, Xpn_1) +un_1(X,, — 1) + (mXax bn_1(Xn_1,Xn) + -un(Xn))] .

n—1 n

But all this can go on recursively, yielding

fc(‘,gz:.t-to-go(xk) — max by (X, Xpp1) + un(Xe) + 58D (Xpg)-

1 cost-to-go

In notation - IV

is equal to

max .

X1,...,.Xn1 (fChain(Xl’ o Xn—1) + fc(fost-’z.o—go(Xn—l))
fehain (X Xn_o)+ Fn=2) (Xn_o)

Xq,.... X, o \Jchainltly---ntn=2 cost-to-go(<tn—2) | »

So

max

X1,..., X, fehain (X1, -+ Xn) = X1 (fCha.in(Xl) + fcl,ost-t,o-go(Xl))

Dynamic programming for a chain

which yields an extremely powerful maximization strategy. We start at X,,, and
: (n—1)

construct f, ¢ 2o

value of the cost-to-go function for each possible value of X,,_1. We build a second

table giving the optimum X, for each possible value of X,,_1. From this, we can

(X5—1). We can represent this function as a table, giving the

build fég;f,z o gO(Xn_g), again as a table, and also the best X,,_; as a function of

Xn_o, again as a table, and so on. Now we arrive at X;. We obtain the solution for

X1 by choosing the X; that yields the best value of (fehain(X1) + gost—t-o—go(X 2))

But from this solution, we can obtain the solution for Xs by looking in the table
that gives the best X5 as a function of X;; and so on. It should be clear that this
process yields a solution in polynomial time; in the exercises, you will show that, if
each X; can take one of k values, then the time is O(nK?).

Heavily simplified tracking model

® We have a moving object, and want to trace its path

® Two sources of information
® Measurement
® actual, but unknown, position in k’th image is x_k (2D, continuous)
® measured position in k’th image is m_k (2D, continuous)
® very close to actual position
® m_k=x_k+(tiny position error)
® far more complex models are possible
® Dynamics
® it isn’t moving much
® ie. x_k+1=x_k+(tiny position change)
® far more complex models are possible

In equations

Motion constraint
Tit+1 = Tk + (g

tiny position change
scaleis Op

Measurement constraint
mr = Tk + Nk

tiny position change
scalei1s Oy,

Finding the path

® To find the path, we must choose x_1, ..., X_n to minimize

T
(ml—fc1zj2(m1—aﬁ1) 4

(:vz—m)qj(xz—m) 4

p

(mn_mn—l);;(mn_xn—l) _I_

(mn_xn)T(mn_xn)

2
Om

Building a cost-to-go function

® Terms involving x_n:

(xn — xn—l)T(ajn — ajn—l) (mn — an)

|

2
Ip

® Maximize with respect to x_n
® set gradient wrt X_n to zero
® rearrange

¢ get 2 2
P (xnl 4 mn) O-mo-p

L 2 2 2 2

o (o Om T 05

We can substitute back

(ml—xl);(ml—xl) X
(xz—ocl)j:(wz—azl) 4

b

—Zp—1) (Tp—Tn_1

(ml—mlzj;(ml—m) X

7"
' (5E2—$1)02($2—901) 4

(xn—Q_wn—l)T(xn—Q_xn—l) _I_
0—2

(xn—l_mn—l)o-Q(wn—l _mn—l) _|_
m

c(xp_1)

And do this again and again...

To get some c(x_1)
® minimize this
® substitute x_1 in expression for x_2

® x_2 in expression for x_3
°

® x_n-1 in expression for x_n

This 1s a dynamic program, too

Can be extended to:

® more complex state models

® more complex measurement models
® more complex dynamic models

Result: The Kalman Filter

Reminder

9.4.1 Terminology and Facts for Graphs

We review terminology here very briefly, as it’s quite easy to forget.
e A graph is a set of vertices V and edges E that connect various pairs of
vertices. A graph can be written G = {V, E}. Each edge can be represented

by a pair of vertices—that is, E C V' x V. Graphs are often drawn as a set
of points with curves connecting the points.

e The degree of a vertex is the number of edges incident on that vertex.

A directed graph is one in which edges (a,b) and (b,a) are distinct; such a
graph is drawn with arrowheads indicating which direction is intended.

An undirected graph is one in which no distinction is drawn between edges
(a,b) and (b, a).

A weighted graph is one in which a weight is associated with each edge.
Two edges are consecutive if they have a vertex in common.

A path is a sequence of consecutive edges.

A circuit is a path which ends at the vertex at which it begins.

A self-loop is an edge that has the same vertex at each end; self-loops don’t
occur in our applications.

Two vertices are said to be connected when there is a sequence of edges starting
at the one and ending at the other; if the graph is directed, then the arrows
in this sequence must point the right way.

A connected graph is one where every pair of vertices is connected.

A tree is a connected graph with no circuits.

e Given a connected graph G = {V, E'}, a spanning tree is a tree with vertices V'
and edges a subset of E. By our definition, trees are connected, so a spanning
tree is connected.

e Every graph consists of a disjoint set of connected components—that is, G =
{(ViuVa...V,, Ey UE;y...E,}, where {V;, E;} are all connected graphs and
there is no edge in E' that connects an element of V; with one of V; for i # j.

e A forest is a graph whose connected components are trees.

DP works for forests

This strategy will work for a model with the structure of a forest. The proof
is an easy induction. If the forest has no edges (i.e., consists entirely of nodes),
then it is obvious that a simple strategy applies (choose the best value for each X;
independently). This is clearly polynomial. Now assume that the algorithm yields
a result in polynomial time for a forest with e edges, and show that it works for a
forest with e + 1 edges. There are two cases. The new edge could link two existing
trees, in which case we could re-order the trees so the nodes that are linked are
roots, construct a cost-to-go function for each root, and then choose the best pair of
states for these roots from the cost-to-go functions. Otherwise, one tree had a new
edge added, joining the tree to an isolated node. In this case, we reorder the tree so
that this new node is the root and build a cost-to-go function from the leaves to the
root. The fact that the algorithm works is a combinatorial insight, but many kinds
of model have a tree structure. Models of this form are particularly important in
cases of tracking and of parsing.

Some 1ssues

® How do you deal with two legs?

® or two arms?
® or, rather, how do you ensure the match has two?

“Efficient Matching of Pictorial Structures,” by P. Felzenszwalb and D.P. Huttenlocher,
Proc. IEEE CVPR 2000, ¢ 2000, IEEE.

What 1f you don’t know the color?

® FEasy answer for video:
® Jook for lateral walking view with a classifier
® read off appearance of arms, legs, etc
® feed into model; now detect in each frame

Build and detect models

A o pictorial
! 1 NI | (11| LN LN Lo L1 t
“* $17+-¥ structure &8 | mi_\i__‘jl | -
v .; [T ‘ ‘ !

L

| |

!!Lola"
likelihood

Ramanan, Forsyth and Zisserman CVPRO05

Ramanan, Forsyth and Zisserman CVPRO05

Ramanan, Forsyth and Zisserman CVPRO05

What 1f you don’t know the color? - 11

® Hard answer for static images:
® guess color; parse; reestimate color; reparse; and so on

Guessing the color

From Ramanan, 03

[terating

I L IE..
o

re—parse with
additional
features

weak arm response

4

suppress
false leg

initial posterior
from edges

iter3

hallucinated
-~
— leg
lower Ur legs

1451

. ° :
lower Vr arms lower Vr arms lower U/r legs

From Ramanan, 03

[terating

From Ramanan, 03

This 1s a search

® And we can prune it
® [t’s easy to detect torso’s accurately
® the arms can get only so far from the torso

Pruned search

FIGURE 20.5: The human parser of Ramanan (2006) is a search of all spatial layouts
in the image to find one that is consistent with the constraints we know on appearance.
Ferrari et al. (2008) show that reducing the search space improves the results. First, one
finds upper bodies, and builds a box around those detections using constraints on the
body size (A). Outside this box is background, and some pixels inside this box are, too.
In B, body constraints mean that pixels labeled F. and F' are very likely foreground,
U are unknown, and B are very likely background. One then builds color models for
foreground and background using this information, then uses an interactive segmenter to
segment, requiring that F. pixels be foreground, to get C. The result is a much reduced
search domain for the human parser, which starts using an edge map D, to get an initial
parse E, and, after iterating, produces F. This figure was originally published as Figure
2 of “Progressive search space reduction for human pose estimation,” by V. Ferrari, M.

Marin-Jiménez, and A. Zisserman, Proc. IEEE CVPR 2008, (©) IEEE 2003.

But dynamic programming fails

® We’ve already seen that getting two arms/legs 1s an issue
® which we ducked, somewhat

® QOur model is wrong

arms tend to have the same color

legs tend to have the same color

this means there should be terms in the cost function that link left/right
this breaks dp

Breaking dp - I

® (ost function for a chain of three variables:
w1 (X1) + b12(X1, X2) + ua(Xs) + bag (X2, X3) + us(Xs)

® Picture:

Breaking dp

® New picture O
X

up(X1) 4+ b12(X1, Xo) + ua(Xo) 4 bag(Xo, X3) + ug(Xs) + b13(X1, X3)

Breaking dp - III

® Try to build a cost-to-go function:
® climinate X3
® but now our cost-to-go function depends on X1 and X2
® 50 no benefit!

® We need to check all triples!

w1 (X1) + b12(X1, Xo) + ua(Xo) 4 bag(Xo, X3) + ug(Xs) + b13(X1, X3)

Breaking dp - IV

Tree Model Full Model

Tran and Forsyth 10

W O—% O

All sorts of pictures

O Could you do dynamic programming here?
X \
|9
O—0
X X
7 8
Not in terms of X1...X9
O
< but in terms of G1, G2, G3
4 G1=(X1, X2, X3)
| G2=(X4, X35, X6)
O——20 G3=(X7, X8, X9)

Strategy for non-dp cases

® Approximation
® true answer 1S intractable

® Strategy:
® Fix some u’s, to make a chain
® dodp
® now fix different u’s, iterate
® One of many possible strategies
® (question is very rich

Our Full

Tran+Forsyth, 10

Important points

Human parsing is useful
Can do with dp

Can lead to models where you can’t maximize with dp
® or can’t maximize efficiently

® What to do is an *“algorithms” question

Approximate algorithms exist
® Hard questions

® “best” approximate algorithm

® quality of approximation

