CS-543: Computer Vision Instructor: D.A. Forsyth Homework 4

Instructions

This homework is a check, and should be done individually. It is due in two weeks from handout, i.e. 28 April 2009. Submit by emailing a PDF to Alex.

Question 1: Tracking

We have a linear dynamical system with states X_i . In particular, X_i is a normal random variable with mean $\mathcal{D}X_{i-1}$ and covariance Σ_d . At each time step, there are *two* components to the measurement Y_i . The components are Y_{i1} and Y_{i2} . One of these two components is a normal random variable with mean $\mathcal{M}X_i$ and covariance Σ_m . The other is a normal random variable with mean 0 and covariance Σ_n . We do not know which of the components is informative. $P(X_1)$ is Gaussian.

Part 1: Show that, if $P(\mathbf{X}_{i-1}|\mathbf{Y}_1, ..., \mathbf{Y}_{i-1})$ is a mixture of k Gaussians, then $P(\mathbf{X}_i|\mathbf{Y}_1, ..., \mathbf{Y}_{i-1})$ is a mixture of k Gaussians.

Part 2: Show that, if $P(\mathbf{X}_i | \mathbf{Y}_1, ..., \mathbf{Y}_i)$ is a mixture of k Gaussians, then

 $P(\mathbf{X}_i | \mathbf{Y}_1, ..., \mathbf{Y}_i, \text{ first component of measurement is informative})$

is a mixture of k Gaussians.

Part 3: Show that the posterior, $P(\mathbf{X}_i | \mathbf{Y}_1, ..., \mathbf{Y}_i)$ is a mixture of Gaussians, with 2^i mixture components.

Part 4: We cannot use an exact representation of the posterior in this case, because there are two many components. Suggest a strategy for managing this problem.

Question 2: Finding Pedestrians

Read the paper "Histograms of Oriented Gradients for Human Detection" by Navneet Dalal and Bill Triggs (International Conference on Computer Vision & Pattern Recognition - June 2005), and prepare a brief (one page) evaluation and critique. What are the major strengths of the method? what are its major weaknesses? what should be done about them?

Question 3: Pictorial structures

In class, I described a method called pictorial structures, which is used to find the configuration of a person in an image given a model of appearance and of inter segment relations.

Part 1: What problems would result using this method for a lateral view of a person in a walking configuration *where you can see both legs*? (hint: one leg is usually better than the other). What can be done about this?

Part 2: Pictorial structure models preserve a tree of spatial relations between body components. Is this tree a sufficient representation? what other relations might exist between body parts? what might be the consequences of ignoring them?