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Registration

e Place a geometric model in correspondence with an image
e could be 2D or 3D model
® up to some transformations
® possibly up to deformation

e Applications
e very important in medical imaging
® building mosaics
® representing shapes
e form of object recognition




Correspondence

Registration implies correspondence
® because once they’re in register, correspondence is easy

Correspondence yields registrations
e take correspondences and solve for best registration

Interact in a variety of ways in the main algorithms




Medical Application

e Register scan of patient to actual patient
e To remove only affected tissue
® To minimize damage by operation planning
® To reduce number of operations by planning surgery
e Register viewing device to actual patient
e virtual reality displays




Images courtesy of Eric Grimson



















Algorithms

e Hypothesize and test
e [terative closest point
e (Coarse-to-fine search




Registration by Hypothesize and Test

e (General idea
® Hypothesize correspondence
® Recover pose
e Render object in camera (widely known as backprojection)
e (Compare to image

® [ssues

e where do the hypotheses come from?

e How do we compare to image (verification)?
e Simplest approach

e Construct a correspondence for all object features to every correctly sized
subset of image points
These are the hypotheses
Expensive search, which is also redundant.




Correspondences yield transformations

e 2D models to 2D images
® Translation
¢ one model point-image point correspondence yields the translation
e Rotation, translation
¢ one model point-image point correspondence yields the translation
¢ one model direction-image direction correspondence yields the rotation
e Rotation, translation, scale
¢ two model point-image point correspondences




Correspondences yield transformations

e 3D models to 3D info

® Translation
¢ one model point-image point correspondence yields the translation
e Rotation, translation
® points, directions
¢ one model point-image point correspondence yields the translation
¢ two model direction-image direction correspondences for rotation
e Rotation, translation, scale
® points, directions
¢ two model point-image point correspondences and one direction
® lines
e two disjoint line correspondences yield rotation, translation, scale

e Many other correspondences work




Correspondences yield transformations

e 3D models, 2D images, calibrated orthographic camera
® Translation

¢ one model point-image point correspondence yields all that can be
known

e Translation, rotation

e three model point-image point correspondence yields all that can be
known

e Etc (perspective cameras, and so on)




Pose consistency

e A small number of correspondences yields a camera
e Strategy:

® (Generate hypotheses using small numbers of correspondences (e.g. triples
of points for a calibrated perspective camera, etc., etc.)
Backproject and verify
¢ Notice that the main issue here is camera calibration
® Appropriate groups are “frame groups”




For all object frame groups O
For all image frame groups F
For all correspondences (' between
elements of F' and elements
of O

Use I, C and O to infer the missing parameters
in a camera model

Use the camera model estimate to render the object

If the rendering conforms to the image,
the object is present

end
end
end




Figure from Huttenlocher+Ullman 1990




Voting on Pose

e Each model leads to many correct sets of

correspondences, each of which has the same pose

® Vote on pose, in an accumulator array
® This is a hough transform, with all it’s issues.




For all objects O
For all object frame groups ['(O)
For all image frame groups ['(])
For all correspondences (' between
elements of J'(]) and elements
of ['O)

Use F'(I), IF{O) and (' to infer object pose P(O)

Add a vote to (J’s pose space at the bucket
corresponding to PP(0O).
end
end
end
end
For all objects O
For all elements [?((J) of (O’s pose space that have
enough votes

Use the I?(0) and the
camera medel estimate to render the object

If the rendering conforms to the image,
the object is present
end




Geo-Calc OBJECT C~130.mode!

Beo-Calc 0BJECT Nosadock.modal
















Verification

Is the object actually there?
Edge based

® project object model to image, score whether image edges lie close to
object edges

Orientation based

® project object model to image, score whether image edges lie close to
object edges at the right orientation

More sophisticated
e QOpportunity!




Figure from Rothwell et al, 1992




Iterative closest point

e For registering 2D-2D or 3D-3D point sets

e typically under translation, rotation and scale

e [terate

¢ Find closest point on measurement to each point on model
® using current pose
e Minimize sum of distances to closest points as a function of pose

e Variants
e model consists of lines, surface patches, etc.
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Figure from Besl+McKay, 1992

Point set

Model: triangle set of 8442 triangles
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Variants

e Use Levenberg-Marquardt on robust error measure

e ignore failures of differentiability caused by correspondence
e Fitzgibbon 2003




Initial alignment (Fitzgibbon, 2003, red rabbit to blue rabbit)
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Coarse to fine search

e (eneral 1dea:
® many minima may be available for registration problems
e ¢g ICP for 2D object to points on image edges
® search a coarse representation at multiple points
e take each local minimum, search a refined representation
® possibly repeat multiple times

e Advantage

® coarse representation is fast to search
® 50 you can look at many poses
® fine representation gives accurate estimates

Figure from Fitzgibbon, 2003




Registration and deformation

e Medical applications often deal with deformable objects

e Real objects often deform, too
e cquivalently, deformation is an important part of matching
* c.g.
¢ matching one car to another
¢ matching one flower to another, etc.

e [dea:

® build parametric deformation model into registration process










Parametric deformation models

e Assume we have a set of points (X, y) which should
deform to (u, v)

U = fl(xay79)7v — fQ(xayae)

e Good models

o Affine
U = apgo + a1y + a2,V = a10x + a1y + as

® More deformation (here the f’s are “small”)

u = fi(z,y,0) + apox + ao1y + az,v = fa(x,y,0) + a0 + a1y




Radial basis function deformations

e Choose some special points in X, y space (7, y7)

e deformation functions become:

(2,9, Zﬁqﬁwy, 7, 5)

® where phi depends only on distance:
[ ] eg

1
w— st (g -y +

o(x,y; x5, y;) =




Radial basis function deformation

e We must choose theta, a’s
® ]east squares

Z (uj — {32, Oi10(x5, y5; 5, yF)] + acox + any + az})’+

cpolnts (v — {[ZZ 0i20(5,Y5; 75, y; )] + acox + ap1y + a2})2
j

e Solving this gives a linear system!
e but we might get f’s that are too big




Radial basis function deformation

® Penalize the least squares

Z [ (ug — {22 0i10(x5, Y55 27, ¥ )] + aoo® + any + @2})2+

07, + 07
(v; = {[22; 0i,20(xj, yj: 27, y7)] + aoox + aory + az})? + A0 +0;2)

jepoints

e And we still have a linear system!

e [CP matching: Iterate

e Fix a’s, thetas, choose correspondences
e Solve for a’s, thetas




Deformation 1s like flow

e Notice the similarity between
® estimating deformation LIx,y)>12(u(x,y), v(X, y))
e cstimating flow field I(x, y, t) -> I(x+a(x, y), y+b(x,y), t+1)

e Recall

® accurate local estimates of flow are hard (no good local description)
® options

e parametric flow model

e smooth




Deformation 1s like flow

Plausible flow model
I(x,y) — I(x + miz + may + m3,y + max + msy + mg)

Not much help if the m’s are fixed
Idea: let the m’s vary with space, and penalize derivatives

Cost function:

Z([(% y) — I(x + mix + may + m3, y + max + msy + me))”
z,y

e simplify to first order term in Taylor series

oI oI .,

;((mlx + moy + 77743)(9—:1j + (myx + msy + m6)8_y)




Deformation 1s like flow

e (verall cost function

((m1z + may + m3)% + (mazx + msy + m6)%)2+

Om; 2 | Omy 2
> (G + %)
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What about multiple modes?

e We could model the change in intensity
e cgl I>al_1+b
® then bung it in minimizer

e [Use mutual information

¢ (loosely) geometric registration between images gives a model of sensors
e P(s_l=a,s_2=b)
¢ maximize the mutual information in this model
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(a) source (b) target (c) registered source
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(d) before registration (e) after registration
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