K-Means, Expectation Maximization and Segmentation

D.A. Forsyth, CS543
K-Means

- Choose a fixed number of clusters
- Choose cluster centers and point-cluster allocations to minimize error
- can’t do this by search
 - there are too many possible allocations.
- **Algorithm**
 - fix cluster centers; allocate points to closest cluster
 - fix allocation; compute best cluster centers
 - x could be any set of features for which we can compute a distance (careful about scaling)

\[
\sum_{i \in \text{clusters}} \left\{ \sum_{j \in \text{elements of } i\text{'th cluster}} \|x_j - \mu_i\|^2 \right\}
\]
K-means clustering using intensity alone and color alone
K-means using color alone, 11 segments
K-means using color alone, 11 segments.
K-means using colour and position, 20 segments
Mixture models and segmentation

- In k-means, we clustered pixels using hard assignments
 - each pixel goes to closest cluster center
 - but this may be a bad idea
 - pixel may help estimate more than one cluster
- We will build a probabilistic mixture model

\[
P(x | \mu_1, \ldots, \mu_k, \pi_1, \ldots, \pi_k, \Sigma) = \sum_i \pi_i P(x | \mu_i, \Sigma)
\]
Mixture model

• Interpretation:
 • obtain pixel by
 • choosing a mixture component
 • given that component, choosing pixel

• Natural to have each mixture component be a Gaussian

\[P(x|\mu_1, \ldots, \mu_k, \pi_1, \ldots, \pi_k, \Sigma) = \sum_i \pi_i P(x|\mu_i, \Sigma) \]
Mixture components

- Gaussians
 - are oriented “blobs” in the feature space
 - we will assume covariance is known, and work with mean
 - expression below

\[
P(x|\mu_i, \Sigma) \propto \exp \frac{- (x - \mu_i) \Sigma^{-1} (x - \mu_i)}{2}
\]
Problem: Learning and IDLL

• We must estimate the mixture weights and means
• Maximising likelihood is very hard
 • in this form, sometimes known as incomplete data log-likelihood

\[
L(\theta) = \sum_i \log P(x_i|\theta) = \sum_i \log \left(\sum_j \pi_j P(x_i|\mu_j, \Sigma) \right)
\]
Complete Data Log-likelihood

- Learning would be easy if we knew which blob each data item came from
 - weights: count what fraction came from which blob
 - means: average data items
- Introduce a set of variables
 - to tell which mixture component a data item came from
 - d_{ij} is 1 if data item i comes from blob j
 - 0 otherwise

$$P(x_i | \delta_i, \theta) = \prod_j P(x_i | \mu_j)^{\delta_{ij}}$$
Complete Data Log-likelihood

- Write the probability for x_i, d_{ij} conditioned on params

\[
P(x_i, \delta_i | \theta) = P(x_i | \delta_i, \theta) P(\delta_i | \theta)
= \left(\prod_j [P(x_i | \mu_j) \pi_j]^{\delta_{ij}} \right)
\]
Complete Data Log-likelihood

- Log likelihood of x, allocation, conditioned on parameters
- Not obviously helpful
 - but notice the useful form - think of d as switches

$$
\log P(x, \delta | \theta) = \sum_{i} \log P(x_i, \delta_i | \theta) = \sum_{ij} [\delta_{ij} \{ \log P(x_i | \mu_j) + \log \pi_j \}]$$
Learning and CDLL

• Introduce hidden variables to get complete data log-likelihood
 • d_{ij} is 1 if data item i comes from blob j
 • 0 otherwise
 • Learning would be easy if we knew which blob each data item came from
 • weights: count what fraction came from which blob
 • means: average data items
 • But we don’t

\[L_c(\theta, \delta_{ij}) = \sum_{ij} \delta_{ij} \log (\pi_j P(x_i | \mu_j, \Sigma)) \]
Working with CDLL

- **Notice:**
 - with an estimate of the parameters, can estimate blobs data came from
 - this could be a soft estimate
 - we could plug this in, then reestimate the parameters

- **Formal procedure:**
 - start with estimate
 - form Q function, below (The E-step)
 - maximise in parameters (The M-step)
 - Iterate

\[
Q(\theta; \theta^{(n)}) = E_{P(\delta|x, \theta^{(n)})} (L_c(\theta, \delta))
\]
The E-step for Gaussian mixtures

- Notice that the expression for the Q function simplifies

\[
E_{\mathbf{P}(\delta|\mathbf{x},\theta^{(n)})} \left(L_c(\theta, \delta) \right) = E_{\mathbf{P}(\delta|\mathbf{x},\theta^{(n)})} \left(\sum_{ij} \delta_{ij} \left[\log \pi_j + \log P(x_i|\mu_j, \Sigma) \right] \right) \\
= \left(\sum_{ij} P(\delta_{ij} = 1|\mathbf{x}, \theta^{(n)}) \left[\log \pi_j + \log P(x_i|\mu_j, \Sigma) \right] \right)
\]
The E-step for Gaussian mixtures

- We rearrange using probability identities

\[
P(\delta_{ij} = 1|x, \theta^{(n)}) = \frac{P(x, \delta_{ij} = 1|\theta^{(n)})}{P(x|\theta^{(n)})}
\]

\[
= \frac{P(x|\delta_{ij} = 1, \theta^{(n)})P(\delta_{ij} = 1|\theta^{(n)})}{P(x|\theta^{(n)})}
\]

\[
= \frac{P(x|\delta_{ij} = 1, \theta^{(n)})P(\delta_{ij} = 1|\theta^{(n)})}{P(x|\delta_{ij} = 1, \theta^{(n)})P(\delta_{ij} = 1|\theta^{(n)}) + P(x, \delta_{ij} = 0|\theta^{(n)})}
\]
The E step for Gaussian mixtures

- And substitute

\[
P(x_i, \delta_{ij} = 0|\theta^{(n)}) = \sum_{k \neq j} \pi_k \frac{1}{Z} \exp \frac{-(x_i - \mu_k^{(n)})\Sigma^{-1}(x_i - \mu_k^{(n)})}{2}
\]

\[
P(x_i|\delta_{ij} = 1, \theta^{(n)}) = \frac{1}{Z} \exp \frac{-(x_i - \mu_j^{(n)})\Sigma^{-1}(x_i - \mu_j^{(n)})}{2}
\]

\[
P(\delta_{ij} = 1|\theta^{(n)}) = \pi_j
\]
The M step for Gaussian mixtures

- We must maximise

\[
\sum_{ij} P(\delta_{ij} = 1 | x, \theta^{(n)}) [\log \pi_j + \log P(x_i | \mu_j, \Sigma)] = \\
\sum_{ij} P(\delta_{ij} = 1 | x, \theta^{(n)}) \left[\log \pi_j - \frac{-(x_i - \mu_j)\Sigma^{-1}(x_i - \mu_j)}{2} \right] - \log Z
\]

- in the mixture weights and in the means
 - we can drop \(\log Z \)
Two ways

• differentiate, set to zero, etc.
• regard the expectations as “soft counts”
 • so mixture weights from soft counts as:
 \[
 \pi_j = \frac{\sum_i P(\delta_{ij} = 1|x_i, \theta^{(n)})}{\sum_{i,j} P(\delta_{ij} = 1|x_i, \theta^{(n)})}
 \]
 • and means from soft counts as:
 \[
 \mu_j = \frac{\sum_i x_i P(\delta_{ij} = 1|x_i, \theta^{(n)})}{\sum_{i,j} P(\delta_{ij} = 1|x_i, \theta^{(n)})}
 \]
Segmentation with EM

Affinity matrix
Good split
Measuring Affinity

Intensity

\[\text{aff}(x, y) = \exp \left\{ -\left(\frac{1}{2\sigma_i^2} \left\| I(x) - I(y) \right\|^2 \right) \right\} \]

Distance

\[\text{aff}(x, y) = \exp \left\{ -\left(\frac{1}{2\sigma_d^2} \left\| x - y \right\|^2 \right) \right\} \]

Texture

\[\text{aff}(x, y) = \exp \left\{ -\left(\frac{1}{2\sigma_t^2} \left\| c(x) - c(y) \right\|^2 \right) \right\} \]
Scale affects affinity
Eigenvectors and cuts

• Simplest idea: we want a vector a giving the association between each element and a cluster
• We want elements within this cluster to, on the whole, have strong affinity with one another
• We could maximize $a^T A a$
• But need the constraint $a^T a = 1$
 • This is an eigenvalue problem - choose the eigenvector of A with largest eigenvalue
Example eigenvector
More than two segments

- Two options
 - Recursively split each side to get a tree, continuing till the eigenvalues are too small
 - Use the other eigenvectors
Normalized cuts

- Current criterion evaluates within cluster similarity, but not across cluster difference
- Instead, we’d like to maximize the within cluster similarity compared to the across cluster difference
- Write graph as V, one cluster as A and the other as B
- Maximize
 \[
 \frac{\text{assoc}(A, A)}{\text{assoc}(A, V)} + \frac{\text{assoc}(B, B)}{\text{assoc}(B, V)}
 \]
 - i.e. construct A, B such that their within cluster similarity is high compared to their association with the rest of the graph
Normalized cuts

- Write a vector y whose elements are 1 if item is in A, -b if it’s in B
- Write the matrix of the graph as W, and the matrix which has the row sums of W on its diagonal as D, 1 is the vector with all ones.
- Criterion becomes

$$\min_y \left(\frac{y^T(D - W)y}{y^TDy} \right)$$

- and we have a constraint
 - This is hard to do, because y’s values are quantized

$$y^TD1 = 0$$
Normalized cuts

• Instead, solve the generalized eigenvalue problem

\[\max_y \left(y^T(D - W)y \right) \text{ subject to } (y^T Dy = 1) \]

• which gives

\[(D - W)y = \lambda Dy\]

• Now look for a quantization threshold that maximises the criterion --- i.e all components of y above that threshold go to one, all below go to -b
Figure from “Image and video segmentation: the normalised cut framework”, by Shi and Malik, copyright IEEE, 1998