
C H A P T E R 16

Learned Image Codes

Image denoising with a filter estimates the value of a pixel at a location with
an estimator (smoothing filter; median filter) that gives a good estimate of the
pixel value even if the image is noisy. This chapter extends this idea dramatically.
Assume you can build a code that (a) represents a pixel neighborhood; (b) can
be estimated correctly from a noisy image; and (c) can be used to reconstruct the
denoised image. You could use this construction to denoise an image. Further, the
construction yields others that make it possible to, for example, predict depth from
a single image (Chapter ??).

16.1 ENCODING AND DECODING

Recall from Section 4.1 that linear filters are a form of pattern detector. A natural
way to build an image representation is in terms of a range of patterns that (a)
commonly appear in images; (b) differ from image to image; (c) can be detected
accurately in noisy images; and (d) can represent all that is happening in any image.
These patterns would need to be detected at different scales, because the image will
tend to zoom in or zoom out.

An encoder is a device that maps an image into a representation in terms of
patterns, patterns of patterns, etc. that are present, sometimes called a latent rep-
resentation. Convolution with some kernel is a very simple example of an encoder.
A simple pattern detector (convolution followed by ReLU) is a more interesting
example. Even more interesting is something that detects patterns of patterns.
Building a more sophisticated encoder is difficult if you choose the convolution
kernels by hand, however. The alternative is to learn these kernels.

One way to learn encodings is to build an encoder together with a decoder,
which is a device that maps the latent representation back into an image (rather
like interpolating samples with a convolution). Learning is by forcing the encoder-
decoder pair to be an autoencoder, which means the decoded object is the same as
the image that goes into the encoder. This chapter sets up the main framework
of encoders, decoders and learning weights in the context of autoencoding. If you
actually build an autoencoder using the information in this chapter, it won’t work.
Building one that works requires a number of important practical tricks, the subject
of the next chapter. Properly built, autoencoders are extremely useful.

16.1.1 Blocks and Convolutional Layers

Section 4.1.7 described multi-channel convolution, which takes a filter bank and a
3D block of features. There are two spatial dimensions, corresponding to x and y
in the image, and one dimension – usually referred to as the feature dimension –
comparable to the color channel in a color image. The result is another such 3D
block of data (Figure 16.1). The feature dimension of the new block is given by

220

Section 16.1 Encoding and Decoding 221

Kernel block 2

Kernel block 1

x

y X

Y

Feature
map 1

Feature
map 2

N

N

i

o

FIGURE 16.1: Multi-channel convolution can be abstracted as a convolutional layer,
a linear operation that takes a block of data and produces a block of data. The
operation (details in Section 4.1.7) takes a Ni channel block of data (where Ni = 3
for a color image) with dimension Ni×x×y and a bank of No kernels, each of which
is Ni×d×d. Apply each filter in the bank to the input block to produce one feature
channel of dimension 1×X×Y , and add the bias for that channel to each element.
Now stack each of these channels, to produce a block of data that is No ×X × Y .
Fixed parameters are the input number of features Ni; the output number of features
No; the kernel size d; the stride s; and the padding p. I will describe these layers
as Ni, No, d, s, p in figures that follow. The detailed relationships between x, X and
d (etc.) depend on choices about stride, padding and so on exercises .

the number of filters. The spatial dimensions are largely the same as that of the
original block, with small changes depending on the padding (Section 4.1.3) used.

In the original description of multichannel convolution, each kernel is placed
at every sample point to compute the result. Skipping sample points appropriately
will have the effect of downsampling. The stride of a multichannel convolution
controls this skipping. If the stride is s, the kernel is placed at every s’th sample
point, meaning the block gets smaller for s > 1. It is often convenient to add some
offset to the result of each kernel in the filter bank. Doing so could, for example,
shift the operating point of the ReLU for a given pattern – faint versions of the
pattern may get no response, as in Section 4.1.6. This constant is known as the
bias.

Write Ik,ij for the k’th feature dimension at the i, j’th location in the input
block which has feature dimension Ni, K(p) for the p’th kernel in the filter bank
which contains No kernels, each of which is Ni × d× d, Bp for the bias of the p’th
kernel in the filter bank, and Np,qr for the p’th feature dimension at the q, r’th
location in the output block. Then

Np,qr =
∑
kuv

Ik,sq−u,sr−vK(p)
kuv + Bp.

222 Chapter 16 Learned Image Codes

Data blocks

Layers

3,
 6

4,
 3

, 1
, 1

64
, 1

28
, 3

, 2
, 1

12
8,

 2
56

, 3
, 2

, 1

3x4Sx4T
64x4Sx4T 128x2Sx2T

256xSxT

Image

Image

Receptive
Fields

FIGURE 16.2: The architecture of a very simple convolutional encoder, visualized in
terms of data blocks (top - the notation f × x× y means the block has f channels
and spatial dimension x× y), layers (center - the notation Ni, No, d, s, p means
the convolutional layer accepts Ni channels, produces No channels, uses d×d filters,
has stride s and padding p) and receptive fields bottom. The thick lines represent
ReLU layers. I have arranged the filters so that the spatial dimension of the block
of features leaving the encoder is 1/4 of that arriving. As is typical, the data blocks
get spatially smaller but have larger feature dimension. What goes in is the image;
you should think of the next block as pattern detector scores; the next as pattern-
of-pattern detector scores; and so on. Effective convolutional encoders are often
significantly deeper and involve further architectural practices, below.

This operation is referred to as a convolutional layer. The values of the filter kernels
and the bias will be learned. Fixed parameters are the input number of features Ni;
the output number of features No; the kernel size d; the stride s; and the padding
(which doesn’t appear in this expression).

Convolutional layers turn blocks into blocks. The ReLU of Section ??, applied
elementwise, will also map a 3D block to another 3D block of the same dimensions,
and is another layer. In general, layers turn blocks into blocks, and further examples
of layers will appear later.

16.1.2 Convolutional Encoders

Now imagine applying a convolutional layer with stride one followed by a ReLU
to an image. The result is a block of data where, at each location, there is a
measure of the goodness of match between the image around that location and
each of the filters in the bank. This is a local description of the image, but it can
be made much richer, by passing the description into another convolutional layer

Section 16.1 Encoding and Decoding 223

followed by another ReLU. The block that comes out can be thought of as detecting
patterns of patterns – structures that are more complicated than those encoded by
a simple filter. This block can usefully be passed into yet another convolutional
layer, followed by yet another ReLU, and so on. If one applies multiple layers,
the output block will be significantly redundant, because the receptive fields for
neighboring elements may be moderately large, and will very largely overlap. A
natural cure is to apply a layer with stride 2 (or possibly even larger).

The window of pixels in the original image that is used to compute the value
at some location in a data block is referred to as its receptive field. Usually, all that
matters is the size of the receptive field, which will be the same for every location
in a given block if we ignore the boundary of the input image. The receptive field
of a location in the first convolutional layer will be given by the kernel of that layer.
Determining the receptive field for later layers requires some bookkeeping (among
other things, you must account for any stride or pooling effects, exercises).

The simplest convolutional encoder, as in Figure 16.3, consists of a sequence
of convolutional layers, each followed by a ReLU; most of the convolutional layers
have stride 1, but there are occasional layers with stride 2. Practice has shown
that data blocks should shrink spatially relatively slowly and grow in the feature
dimension quite fast. The block of data that comes out of a convolutional encoder
is a set of features. The particular features are heavily dependent on the filter
kernels in each layer, but in principal could form an extremely rich and detailed
image description. If it is an image representation, you should be able to get an
image out of it.

16.1.3 Unfiltering

Imagine you have a filtered image, and wish to recover the original. Two strate-
gies from the previous chapters seem plausible. You might apply strategy of Sec-
tion 9.3.1, but now where the linear operator B is replaced by whatever filter had
been applied. A regularized reconstruction would be linear and shift-invariant in
the input, too. The results of that section suggest that the outcome might not be
perfect, but could be acceptable.

Alternatively, you would find the Fourier transform of the filtered image,
divide by the Fourier transform of the filter, then inverse Fourier transform. Notice
that the convolution theorem means that doing so involves convolving the filtered
image with some other filter (apply an inverse Fourier transform to the reciprocal
of the Fourier transform of the original image). There are some obstacles that need
to be dealt with – there might be zeros in the Fourier transform of the filter, for
example – but the procedure should seem do-able. Either argument yields that
the image can be reconstructed by convolving with some filter, sometimes called a
reconstruction kernel. Equivalently, the reconstructed image consists of a weighted
sum of copies of a particular pattern – the reconstruction kernel – placed at each
location.

16.1.4 Convolutional Decoders

It is possible to recover an image from the more complex representation produced
by a convolutional encoder, with some conditions. If you think of the encoding

224 Chapter 16 Learned Image Codes

Data blocks

Layers

3,
 6

4x
3x

3,
 s1

, p
1

64
, 1

28
x3

x3
, s

1,
 p

1

12
8,

 2
56

x3
x3

, s
1,

 p
1

3x4Sx4T
64x4Sx4T 128x2Sx2T

256xSxT

Image

Image

FIGURE 16.3: The architecture of a very simple convolutional decoder, visualized
in terms of data blocks (top), layers (center - the notation f , d × x × y, sN ,
pM means f filters in the block, of spatial extent x× y, accepting a d dimensional
layer, with stride N and padding M). The receptive field of a decoder is are not
usually discussed, and I have omitted this here. The thin layers represent ReLU
layers. The gray layers represent upsampling by 2 in each dimension. The final
pale gray layer could be one of a number of things that are intended to deal with
the fact that images have a limited range, including the identity (more details in
Section 17.2.1). I have arranged the filters so that the spatial dimension of the block
of features leaving the decoder is 4 times that arriving. As is typical, the data blocks
get spatially bigger but have smaller feature dimension. What goes in is the data
block of codes; you should think of the next block as pattern-of-pattern-of-pattern
maker; the next as a pattern-of-pattern maker; and so on. Effective convolutional
decoders are often significantly deeper and involve further architectural practices,
below, but this picture covers the major features for now.

as a map of where particular patterns of patterns of patterns (etc.) occur, then
the overall strategy should be clear: reconstruct the image by placing the relevant
patterns at each location. Do this by creating a layout of high level patterns,
then replacing the components of the high level patterns with a layout of lower
level patterns, and so on. At each stage, clip the layouts to avoid negative values
accumulating. This process of placing patterns is a convolutional layer, and the
clipping is a ReLU layer. So construct a sequence of layers that takes data blocks
and produces data blocks, starts with the encoding and ends with an image.

One trick is necessary. The encoding is smaller in space dimensions than the
image and has more feature channels. The sequence of layers must, on occasion,
make data blocks get bigger in space and smaller in feature channels. Smaller in
feature channels is easy to achieve: one just uses fewer filters. Bigger in space is
also easy to achieve: regard the data block as being like an image, and upsample
it as in Section 2.2 (there are other strategies: exercises). The resulting object
is known as a convolutional decoder.

Section 16.2 Learning by Descent 225

16.2 LEARNING BY DESCENT

What makes an encoder or a decoder work well is a good choice of filter banks.
It turns out that these can (and as far as anyone knows, should) be learned from
data. A good choice of filter banks will give a good encoding or a good decoding of
images that weren’t used in training. Obtaining this generalization property takes
care. Further, you can’t train an encoder to produce the right encoding of an image,
because you don’t know what that is. There might be many very good encodings
of images that differ only by (say) some complicated transform in feature space,
but are otherwise equivalent. There isn’t any particular reason to choose one of
these. The right strategy is to train an encoder-decoder pair together, to form an
autoencoder – something that can reconstruct an image from a noisy version.

16.2.1 Learning by Descent on a Loss Function

Write E(·;ψ) for an encoder which accepts an image (in the · slot), produces an
encoding, and has parameters ψ (the filter banks). Write D(·;ϕ) for a decoder that
accepts an encoding (· slot again), produces an image, and has parameters ϕ (the
filter banks). Stack the ψ and ϕ into one vector θ. Write S for a set of N training
images. The i’th image is Ii.

The autoencoder produces some image O(I, θ) = D(E(I;ψ);ϕ) when given
I. Construct a cost function C(O(I, θ), Ii) that compares the output of the auto-
encoder to I. This cost function is typically a weighted combination of the L2 norm
and the L1 norm (Section 9.2.2).

Now write

LS(θ) =
1

N

∑
i∈S
C(O(Ii, θ), Ii)

for the loss – an average over a set S of images of the cost per image. The problem
is to find a θ that produce an acceptably small value of the loss. In an ideal world,
S would be all possible images, but this isn’t practical. Instead, train on some
large set of images (the training set). If this set is large enough and representative
enough, expect that the autoencoder will also have low loss on other images, a
property called generalization.

Obtaining the best loss for a set of training images might look like an opti-
mization problem, but be careful. Optimization methods look for true optima (or
points that are very close to them). In this problem, a value of θ that gives a low
loss may be better than the value that exactly minimizes the loss on the training
set. What is important is the autoencoder behaves well on new, future images –
equivalently, that the loss on some other, unknown, set of images is small. The
best value of θ on the training set may well incorporate special properties of the
training set, and so behave badly on other sets, whereas a value of θ that has low
loss on the training set might generalize.

Furthermore, viewed as a pure optimization problem, this problem is quite
hard. There will be a lot of filters, and so a lot of parameters, otherwise there might
not be a strong reason to learn the parameters. The objective is very expensive
to evaluate exactly, because autoencoders are regularly trained on hundreds of
thousands to millions of images. The objective L is not quadratic (and, as the
encoder or decoder have ReLU’s in them, not even everywhere differentiable). A

226 Chapter 16 Learned Image Codes

true second order method is likely hopeless, because there are a lot of parameters
and so the Hessian will be enormous. A conventional first order method is going to
have problems because evaluating the gradient would require summing over a very
large number of images. Further, line search isn’t practical, because evaluating the
objective exactly is impractical.

16.2.2 Stochastic Gradient Descent

A family of first order methods is very successful at finding good values of θ. All
members of the family depend on the fact that a very good estimate of a population
mean can be obtained by drawing a small sample uniformly and at random, then
computing the mean of that sample. So, for example, the average weight of a mouse
(which isn’t a random variable, but could only be evaluated by weighing all mice
and averaging) could be estimated very accurately by drawing a random sample of
B mice and averaging their weights. The resulting average is a random variable,
with an approximately normal distribution, whose mean is the true mean and whose
standard deviation is 1√

B
times the standard deviation of the population weight.

In the case of the loss function, choose a sample size B – usually called a batch size
– draw B, a set of B images Ij drawn uniformly and at random, and form

∇θLB(θ) =
1

B

∑
j∈B
∇θC(Ij ; θ)

and use this as an estimate of
∇θLS

to take a descent step. Write
∇̂θL

for this estimate. Choose a stepsize ηn for the n’th step, and the descent method
becomes

θn+1 = θn − ηn∇̂θL.

This is stochastic gradient descent or SGD. Calling ηn a stepsize is dubious (the
gradient isn’t a unit vector); an alternative is to call it the learning rate (which
isn’t much better because it isn’t a rate).

A variety of considerations affect the choice of ηn. If ηn is too big, the pro-
cedure can diverge (try it!). If ηn is too small, θ doesn’t change very much. In
the early stages of training, its likely a good idea to travel quite long distances, so
ηn should be large for small n. Similarly, after a large number of steps, it is likely
a bad idea to travel a long distance (among other reasons, the estimated gradient
might be wrong). It is known that, if (a) ηn → 0 as n → ∞ and (b)

∑
n ηn → ∞

as n → ∞, then the sequence L(θn) will decrease toward the value of some local
minimum. Stripped of the notation, this should seem fairly obvious: if the distance
you can travel is arbitrarily long and the step you take decreases with time and
mostly you go downhill, eventually you’ll be close to some form of minimum.

For concreteness, here is one procedure for choosing ηn. Choose some value
that is small, but not too small (1e-3 has a following here). Take many steps using
that value. Now reduce the value, and continue. Repeat as necessary. One way to

Section 16.2 Learning by Descent 227

reduce the value is to multiply by a constant. Typically, both the starting constant,
the number of steps, and the constant to multiply by are chosen by experiment.
The general procedure for choosing ηn is known as step length scheduling or learning
rate scheduling. There is a rich variety of alternative methods in any reasonable
API, suggesting (correctly) that different choices work for different applications.
A crude – but surprisingly powerful – procedure for keeping track of the training
process is to plot the value of training loss as a function of the number of steps.
Typically, one averages for some number of steps, then plots. This plot – often
called a learning curve – can be monitored during training for signs of trouble like
divergence. Another useful plot is a plot of loss computed for a held out validation
set. If this stays a lot larger than the training loss, that is a sign of trouble.

Notice that some first-order optimization tricks are not available. Descent
isn’t guaranteed because you might have an unlucky estimate of the gradient. You
can’t do line-search in the descent direction, because it is too expensive to evaluate
the objective function. You can’t actually tell whether you’re at an optimum,
because it is too expensive to evaluate the objective function. As Section ?? shows,
a variety of interesting gradient scaling tricks become available and are genuinely
helpful.

16.2.3 Evaluating the Gradient by Backpropagation

Descent requires forming

∇̂θL =
1

B

∑
j∈B
∇θC(O(θ), Ij).

There is an efficient recursion to compute this, because the predicted output is a
function of a number of layers. Each layer has its own set of parameters. Drop the
distinction between decoder layers and encoder layers and write the w’th layer as
Lw(·; θw) (here θw consists of the elements of θ apply to the w’th layer. Write all
this out layer by layer, keeping track of the blocks that move through the layers,
to get

D(E(I;ψ);ϕ) = Bk+1

where

Bk+1 = Lk(Bk; θk)

Bk = Lk−1(Bk−1; θk−1)

. . .

B1 = I

In this notation, computing the gradient is a straightforward application of the
chain rule, which leads to a recursion known as backpropagation. The derivation is
simple, but tedious, and is relegated to exercises . Write ∇OC for the gradient
of the loss with respect to the prediction – this is a vector if the prediction has been
straightened into a vector. Write JLw;θw for the derivative of the function Lw with
respect to parameters θw, and JLw;Bw

for the derivative of the function Lw with

228 Chapter 16 Learned Image Codes

respect to inputs Bw. This leads to a recursion:

uT
0 = ∇OCT

∇θkC = uT
0 JLk;θk

uT
1 = uT

0 JLk;Bk

∇θk−1
C = uT

1 JLk−1;θk−1

. . .

ur = uT
r−1JLk−r+1;Bk−r+1

∇θk−r
C = urJLk−r;θk−r

. . .

∇θ1C = uk−1JL1;θ1

Notice how first you evaluate each layer on its inputs (which are outputs of the
previous layer); this is a forward pass from the input to the output. You need to do
this to ensure you’re evaluating derivatives at the right point. Next, you evaluate
gradients of each layer from the output to the input, using the results of the forward
pass; this is a backward pass, and is responsible for the name.

16.3 LOSSES AND GENERALIZATION

Section 16.2.1 was deliberately vague about loss functions. The purpose of a loss
function is to “push” the parameters of a learned system in a helpful direction.
Keep in mind that the learning procedure follows approximate gradients, meaning
that the value of the loss is not usually particularly significant but the gradients
are crucial. They should push the system – right now, an autoencoder – to behave
in a desirable way. What is important is good behavior on a future test set, rather
than on the training set. The function used to measure performance on the test set
may not be a good – or even usable – loss function, so the loss function used for
training may need to be some kind of approximation of the performance measure.

16.3.1 L2 and L1 Losses

Loss functions typically evaluate residuals – the difference between what the system
provides and ground truth. The SSD loss compares a reconstructed training image
R to the ground truth G by

CL2(R,G) =
∑
ij

∆2
ij ,

where ∆ij = Rij −Gij is the residual. This is the square of the L2 norm of ∆, and
is sometimes (rather disreputably) referred to as an L2 loss. This might seem a
natural training loss, but it has an important disadvantage. Reconstructions from
an autoencoder trained with an SSD loss tend to be blurry; Figure ?? shows why.
The key issue is that the square of a small number is very small.

One way to discourage this blurring is to use an L1 loss as well. Recall from
Section 9.2.2 that using an L1 norm as a penalty for the gradient tends to cause

Section 16.3 Losses and Generalization 229

In
te

ns
ity

Position

Input Output

Input Output

FIGURE 16.4: The L2 loss tends to produce blurry images. Assume some system is
trying to reproduce an image with a strong, sharp edge (top left). The green (full)
curve is a cross-section of the intensity through that edge. The red (big dashes)
reconstruction has high L2 loss, because it places a sharp edge in the wrong place,
and so is penalized by the square of a large error. The blue (small and smaller
dashes; dots) reconstructions are blurry, and place the edge in only about the right
place. Nonetheless, the L2 loss is for these is small, because it is the sum of squares
of small errors, and the square of a small number is even smaller. In turn, a
reconstruction that has sharp edges pays a high penalty for putting them in slightly
wrong locations, whereas a reconstruction that produces blurry edges will have a low
loss even if they are somewhat misplaced. Top right shows detail blocks of input
and output for two images. Notice the loss of detail (arrows). Image credit: Images
are my photographs of a cheerful dinner table and an enticing shop window.

the gradient to have zeros, assuming the optimization process can cope. Using an
L1 term, written

CL1(R,G) =
∑
ij

|∆ij |

will tend to encourage the residual to have zeros in it, and will tend to discourage
blurring (Figure ??).

Autoencoders are now usually trained with a weighted sum of L1 and SSD
losses. As Section 17.2.1 shows, a variety of other terms might appear as well.
This means that you must choose weights. The choice of these weights should have
effects on the behavior of the resulting autoencoder.

Here is a way to think about the relative weight of L1 and L2 loss (Section ??
discusses other cases). Assume the system is predicting one number, x, and the
intended prediction is t. The residual ∆ is x− t. The weighted sum of losses is

a∆2 + b|∆ |.

230 Chapter 16 Learned Image Codes

Input L2 Output L1 Output

FIGURE 16.5: The L1 loss tends to reduce blur in reconstructed images. Left shows
detail blocks from images; center shows the corresponding blocks from an autoen-
coder trained with SSD loss only; and right shows reconstructions from a simple
autencoder trained with an L1 loss only. The effect is small, but it is there (look at
the text in the shop window if you’re not convinced). Image credit: Images are my
photographs of a cheerful dinner table and an enticing shop window.

This is often referred to as a L1/L2 loss. When |∆ | = b/a, the two losses have the
same value. As |∆ | grows, the SSD term dominates; similarly, as |∆ | shrinks, the
L1 term dominates. In turn, this suggests that if x is in the range 0−1, b/a should
be in this range too. If the residual is large, the SSD term should be important, so
b/a around 0.1 looks good.

16.3.2 Losses and Gradients

The main point of the exercise is not the loss function, but the gradient that it
provides the learned system. In fact, Section ?? gives an example of a procedure
that yields gradients without an actual loss (this isn’t the usual case). Further,
stochastic gradient descent doesn’t use an exact gradient, so a loss function that is
not differentiable at some points is often not a serious problem.

For example, think about the L1 loss, which isn’t differentiable when the
residual is zero, and recall the notation of Section 16.2.3. The differentiability
problem means that for some example images, at some pixels, we do not know the
value of the gradient. These will be the pixels where the residual is zero. At other
pixels, the gradient is either 1 or −1. Apply the strategy of using either −1 and
1 for the value of the gradient at the pixels where the residual is zero; you could

Section 16.3 Losses and Generalization 231

choose randomly, or always use one value. No problems result, from the following
arguments:

• There are few such pixels, in few images. Any error that results will be
swamped by the noise in the gradient caused by random choice of examples.

• If the residual was very slightly different at that pixel, the gradient value you
used would be correct.

• This strategy properly represents the subgradient (only convincing if you
know what a subgradient is; it isn’t worth the trouble to expand this argument
for others).

Here is an example of a bad loss. The indicator function is a function that
tests its argument against a condition, then reports 1 if the condition is true and
zero otherwise. For example,

I[x<0](x) =

{
1 if x < 0
0 otherwise

is 1 when x < 0 and 0 otherwise. Note some redundancy here; the condition usually
means it is obvious what the argument is, so it is quite usual to write I[x<0] rather
than I[x<0](x). The following (BAD) choice of loss could be intended to force an
output to be non-negative:

Cbad(I) =
∑
ij

I[Iij<0]

(i.e. count the negative pixels). This (again, very bad) choice of loss is bad not
because it isn’t differentiable, but because it provides no gradient – for every value of
Iij other than zero, the gradient is zero, and for the remaining case it is undefined.

Smoothing this loss very slightly to produce (say)

Cbad(I) =
∑
ij

1

1 + eaIij

(for a some large number, a > 0) does not help. Again, the gradient is tiny for most
image values. There is nothing to push the system to the right behavior unless it
is already very close.

16.3.3 Cheating

Training procedures are very effective at finding parameter values that produce
small training losses. These parameter values may not actually do what you expect,
an effect sometimes called cheating. Cheating is a quite common phenomenon in
learned systems. A good rule of thumb is to assume the system is cheating unless
you have very strong evidence that it is not. Because cheating occurs when training
has found a way to get a small loss without doing what you want it to do, this is
equivalent to assuming you don’t understand the system and losses as well as you
think you do (often a wise assumption).

232 Chapter 16 Learned Image Codes

Here is an example in the simple case of an autoencoder with two encoder
layers and two decoder layers. For concreteness, the first layer in this example has
3x3 filters with stride 1. Make one filter that simply reports the image value at the
center location (the other filters don’t matter). The pixel value is non-negative,
and so passes through the ReLU without alteration. The next layer has 3x3 filters
and stride 2; this means that mild ingenuity with multiple filters is required to
pick out the pixel values to pass on (exercises). Very little further ingenuity is
required to ensure the decoder layer produces the original image. Experience shows
that searching for parameters using stochastic gradient descent is extraordinarily
powerful, and is perfectly capable of finding a set of parameters that cheats like
this. This is cheating because the search has minimized the loss function, but
the representation isn’t actually of any use. Worse, adding layers, filters, and so
on might simply increase the scope for cheating while making it more difficult to
understand the detailed structure of any particular cheating strategy.

16.3.4 Denoising to Avoid Cheating

The autoencoder is able to cheat because it can pass on the input image. Au-
toencoding in and of itself isn’t particularly interesting – why bother coding and
then decoding the image if you just want the original – but is a means to an end.
The encoding of the image should represent all that is important about the im-
age, and should be robust – if the encoder is presented with a noisy version of the
image, it should produce the code for the original image. This suggests training
the autoencoder to denoise images. As Chapter ?? shows, pixels near a particular
image location contain a great deal of information about the value at that location.
Making an autoencoder denoise should force it to exploit everything it can in the
neighborhood of a pixel when it encodes the image.

16.3.5 Generalization

A good autoencoder should denoise all images, not just the images it was trained
on. This property is an instance of a broader idea to do with learned systems, often
called generalization. The goal of training a learned system is to have it perform
well on inputs that are like its training data, but are not exactly the same. Being
precise about the meaning of “like ... but not exactly the same” is surprisingly
hard.

A system that fails to generalize has found a way to perform well on training
images, but not on any other. Typically, this occurs because the system relies on
a correlation that is present in the training data, but may not be present in other
data. For example, if the noise only changes some bright red pixels, the trained
autoencoder might cheat on any pixel that isn’t bright red. It is obvious that this
choice of noise model is bad, but there may be strong correlations in the training
data that are not obvious, and aren’t in all relevant data.

There are several strategies to encourage generalization that apply here. The
most basic involves using a great deal of training data. This is quite do-able for
image denoising, because it is relatively straightforward to obtain very large collec-
tions of images (Section 15.10). However many images in your basic training set,
you can make this set look significantly bigger by augmentation, which creates new

Section 16.3 Losses and Generalization 233

images from old. For a denoising application, notice there are many operations you
can apply to an image that result in an image: cropping an image and resizing it;
left-right flipping it; up-down flipping it; or making it slightly brighter or slightly
darker. Further, you can make it hard for the system to cheat by memorizing ex-
amples. It is not a good idea to construct a dataset of noisy/clean pairs in advance,
because there might be some unexpected correlation between noise and image. In-
stead, apply noise to the image when a batch is formed (so the system could see
many different noisy versions of the same image).

Another strategy is to discourage large values in the filter coefficients, a prac-
tice known as regularization. Imagine two filters that get about the same response
from a range of real inputs. The one with smaller coefficients is likely a better
choice. The large coefficients appear to have no effect on real data (because the
filters get about the same response on a range of real inputs), but might produce
a large response on some new piece of data that is somewhat unlike the training
data. This large response is likely spurious; worse, it may cause a cascade of errors
where some other filter responds strongly to the spurious response.

Regularization can be implemented by adding a term to the loss that penalizes
the sum of squared parameter values, with a small weight (chosen by experiment,
Section ??). This is equivalent to adding a term to the gradient that “shrinks” the
weights (exercises), and so is often referred to as weight decay.

Another regularization strategy is dropout, where one randomly replaces el-
ements of a data block with zeros during training. This is intended to advantage
filters that are robust to error. Dropout will tend to disadvantage a filter that
relies too strongly on one input, because that input might be dropped out. Some
housekeeping is required to implement dropout properly, because the filter sees a
“smaller” input in training (where some inputs might be zeroed) than in test. A
good API will have a dropout implementation that takes care of this, and I leave
the topic to the manual of your API. Further strategies involve discouraging large
values in data blocks (normalization) and are dealt with in Section ??.

