
C H A P T E R 27

Cameras

27.1 THE PINHOLE CAMERA

A pinhole camera is a light-tight box with a very small hole in the front. Think
about a point on the back of the box. The only light that arrives at that point
must come through the hole, because the box is light-tight. If the hole is very small,
then the light that arrives at the point comes from only one direction. This means
that an inverted image of a scene appears at the back of the box (Figure 27.1). An
appropriate sensor (CMOS sensor; CCD sensor; light sensitive film) at the back of
the box will capture this image.

Pinhole

FIGURE 27.1: In the pinhole imaging model, a light-tight box with a pinhole in it
views an object. The only light that a point on the back of the box sees comes
through the very small pinhole, so that an inverted image is formed on the back face
of the box.

Pinhole camera models produce an upside-down image. This is easily dealt
with in practice (turn the image the right way up). An easy way to account for this
is to assume the sensor is in front of the hole, so that the image is not upside-down.
One could not build a camera like this (the sensor blocks light from the hole) but it
is a convenient abstraction. There is a standard model of this camera, in a standard
coordinate system (Figure 27.2). Notice that the y axis goes down in the image.
While this is usual for image coordinate systems, there are further reasons to do
this. Most people’s intuition is that z increases as one moves into the image, and
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Section 27.1 The Pinhole Camera 327

orienting the y axis downward in the image allows me to achieve this, have x in the
usual direction, and use a right-handed coordinate system. The pinhole – usually
called the focal point – is at the origin, and the sensor is on the plane z = f . This
plane is the image plane, and f is the focal length. We ignore any camera body and
regard the image plane as infinite.
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FIGURE 27.2: The usual geometric abstraction of the pinhole model. The box doesn’t
affect the geometry, and is omitted. The pinhole has been moved to the back of the
box, so that the image is no longer inverted. The image is formed on the plane
z = f , by convention. Notice the y-axis goes down in the image. This allows me to
use a right handed coordinate system and also have z increase as one moves into
the image.

Under this highly abstracted camera model, almost any point in 3D will map
to a point in the image plane. We image a point in 3D by constructing a ray through
the 3D point and the focal point, and intersecting that ray with the image plane.
The focal point has an important, distinctive, property: It cannot be imaged, and
it is the only point that cannot be imaged.

Similar triangles yields that the camera maps a point X in 3D to a point x
on the image plane by:

X =

 X
Y
Z

→
 fX/Z

fY/Z
f

 = x.

Notice that the z-coordinate is the same for each point on the image plane, so it is
quite usual to ignore it and use the model

X =

 X
Y
Z

→ (
fX/Z
fY/Z

)
= x.
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The focal length just scales the image. In standard camera models, other scaling
effects occur as well, and we write projection as if f = 1, yielding

X =

 X
Y
Z

→ (
X/Z
Y/Z

)
= x.

The projection process is known as perspective projection. The point where the z-
axis intersects the image plane (equivalently, where the ray through the focal point
perpendicular to the image plane intersects the image plane) is the camera center.

Remember this: Most practical cameras can be modelled as a pinhole
camera. The standard model of the pinhole camera maps

(X,Y, Z)→ (X/Z, Y/Z).

Figure 27.1 shows important terminology (focal point; image plane; camera
center).

27.1.1 Perspective Effects
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FIGURE 27.3: Perspective projection maps almost any 3D line to a line in the image
plane. Some rays from the focal point to points on the line are shown as dotted
lines. The family of all such rays is a plane, and that plane must intersect the
image plane in a line as long as the 3D line does not pass through the focal point.

Perspective projection has a number of important properties, summarized as:

• lines project to lines (Figure 27.3);
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FIGURE 27.4: Two 3D objects of the same size viewed in perspective projection.
Division by Z (or, equivalently, similar triangles) means the more distant object
appears smaller in the image.
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FIGURE 27.5: Perspective projection maps a set of parallel lines to a set of lines that
meet in a point. The figure shows a set of lines parallel to the z-axis, with “railway
sleepers” shown. As these sleepers get further away, they get smaller in the image,
meaning the projected lines must meet. The vanishing point (the point where they
meet) is obtained by intersecting the ray parallel to the lines and through the focal
point with the image plane.

• more distant objects are smaller (Figure 27.4);

• lines that are parallel in 3D meet in the image (Figure 27.5 and Figure 27.6);
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FIGURE 27.6: Here are a different pair of parallel lines from Figure 27.5, with a
different vanishing point, and “railway sleepers” still shown. Just as in Figure 27.5,
as these sleepers get further away, they get smaller in the image, meaning the
projected lines must meet. Just as in Figure 27.5, the vanishing point (the point
where they meet) is obtained by intersecting the ray parallel to the lines and through
the focal point with the image plane.

• planes image as half-planes (Figure 27.7);

• planes have horizons (Figure 27.7);

• shapes are foreshortened (Figure ??).

Lines project to lines: Almost every line in 3D maps to a line in the image.
You can see this by noticing that the image of the 3D line is formed by intersecting
rays from the focal point to each point on the 3D line with the image plane. But
these rays form a plane, so we are intersecting a plane with the image plane, and
so obtain a line (Figure 27.3). The exceptions are the 3D lines through the focal
point – these project to points.

More distant objects are smaller: The further away an object is in 3D,
the smaller the image of that object, because of the division by Z (Figure 27.4).

Lines that are parallel in 3D meet in the image: Now think about a
set of infinitely long parallel railroad tracks. The sleepers supporting the tracks are
all the same size. Distant sleepers are smaller than nearby sleepers, and arbitrarily
distant sleepers are arbitrarily small. This means that parallel lines will meet in the
image. The point at which the lines in a collection of parallel lines meet is known
as the vanishing point for those lines (Figure 27.5 and Figure ??). The vanishing
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FIGURE 27.7: Two different world planes and their horizons. The gradients on the
planes indicate roughly where points on the 3D plane appear in the image plane
(light points map to light, dark to dark).

point for a set of parallel lines can be obtained by intersecting the ray from the
focal point and parallel to those lines with the image plane.

Planes image as half-planes: The top of Figure 27.7 shows the plane
y = −1 being viewed by a perspective camera. The intersection of the plane
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through the focal point parallel to the 3D plane (in this case, y = 0) and the image
plane, forms an image line called the horizon. This line cuts the image plane into
two parts. This applies to any plane in 3D, as the bottom of the Figure shows.
Construct the ray through the focal point and a point x in the image plane. For
x on one side of the horizon, this ray will intersect the 3D plane in the half space
z > 0 (and so in front of the camera, shown here). If x is on the other side of the
horizon, the intersection will be in the half space z < 0 (and so behind the camera,
where it cannot be seen).

Planes have horizons: Figure 27.7 shows the horizons of two different
planes being viewed by a perspective camera. The horizon is a line in the image
formed by the set of vanishing points for all pairs of parallel lines on the plane.
Alternatively and equivalently, the horizon is the line of image points where the ray
through the focal point and the image point intersects the world plane infinitely far
away. Alternatively and equivalently, the horizon is the intersection between the
image plane and the plane parallel to the world plane through the focal point.

On images of planes, closer to the horizon is further away: This is
an occasionally useful little fact that is regularly rediscovered. Write x and x′ for
two image points that are the image of two points X and X′ lying on a world plane
that isn’t parallel to the image plane. Write dh(x) for the perpendicular distance
from x to the horizon of that plane, etc. Write df (X) for the distance from the
focal point to X. It is an exercise to show that

dh(x
′) > dh(x) ≡ df (X′) > df (X)

and

dh(x
′) = dh(x) ≡ df (X′) = df (X).

Shapes are foreshortened: Figure ?? shows rectangles (the boxes between
the “sleepers” in the figure) being imaged as parallelipipeds. It is an exercise to
show that, in a perspective camera, a circle can be imaged as an ellipse; as a
parabola; or as one branch of a hyperbola. The general term for these and other
changes of shape is foreshortening.

27.1.2 Scaled Orthographic Projection

Under some circumstances, perspective projection can be simplified. Assume the
camera views a set of points which are close to one another compared with the
distance to the camera. Write Xi = (Xi, Yi, Zi) for the i’th point, and assume that
Zi = Z(1+ϵi), where ϵi is quite small. In this case, the distance to the set of points
is much larger than the relief of the points, which is the distance from nearest to
furthest point. The i’th point projects to (fXi/Zi, fYi/Zi), which is approximately
(f(Xi/Z)(1 − ϵi), f(Yi/Z)(1 − ϵi)). Ignoring ϵi because it is small, we have the
projection model

(X,Y, Z)→ (f/Z)(X,Y ) = s(X,Y ).

This model is usually known as scaled orthograpic projection. A geometric view of
this model is that points in 3D “slide” down rays perpendicular to the image plane
to form their image (Figure 27.8). It is an exercise to show that parallel lines do
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not have vanishing points and that planes do not have horizons in scaled ortho-
graphic cameras. However, scaled orthographic cameras do foreshorten shapes, as
Figure 27.8 and the exercises show.
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FIGURE 27.8: Scaled orthographic projection with s = 1 is particularly easy to draw
(and if s is not 1, one can then rescale the image as required). Here a point X in
3D projects to a point x in the image plane by “sliding” down a line perpendicular
to the image plane – which is a plane of constant Z, so the line is parallel to the
Z axis. In the top right corner, a rectangle is imaged as a foreshortened rectangle.
The shortened edges of the rectangle are shortened because they are not parallel to
the image plane (exercises).

The model applies quite often. One important example is pictures of people.
Very often, all body parts are roughly the same distance from the camera — think
of a side view of a pedestrian seen from a motor car. Scaled orthographic projection
applies in such cases. It is not always an appropriate model. For example, when a
person is holding up a hand to block the camera’s view, perspective effects can be
significant (Figure 27.9).

27.1.3 Orthographic Projection

Occasionally, it is useful to rescale the camera (or assume that f/Z = 1), yielding
(X,Y, Z)→ (X,Y ). This is known as orthographic projection.
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FIGURE 27.9: The pedestrian on the left is viewed from some way away, so the dis-
tance to the pedestrian is much larger than the change in depth over the pedestrian.
In this case, which is quite common for views of people, scaled orthography will ap-
ply. The celebrity on the right is holding a hand up to prevent the camera viewing
their face; the hand is quite close to the camera, and the body is an armslength
away. In this case, perspective effects are strong. The hand looks big because it is
close, and the head looks small because it is far.

Remember this: Under perspective projection:

• points project to points;

• lines project to lines;

• more distant objects are smaller;

• lines that are parallel in 3D meet in the image;

• planes image as half-planes.

• planes have horizons;

• and shapes are foreshortened.

Scaled orthographic projection applies when the distance to the points is
much greater than their relief. Scaled orthographic projection maps

(X,Y, Z)→ s(X,Y )

where s is some scale. Shapes are foreshortened under scaled orthographic
projection.
Orthographic projection maps

(X,Y, Z)→ (X,Y )

Shapes are foreshortened under orthographic projection.
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27.2 LENSES

One practical version of a pinhole camera is a camera obscura – the box is built as
a room, and you can stand in the room and see the view on the back wall (some ex-
amples are at https://www.atlasobscura.com/lists/camera-obscura-places;
the internet yields amusing disputes about the correct plural form of the term).
You can also build a simple pinhole camera with a matchbox, some tape, a pin, and
some light sensitive film do the trick. Getting good images takes trouble, however.

A large hole in front of the camera will cause the image at the back to be
brighter, but blurrier, because each point on the sensor will average light over all
directions that happen to go through the hole. If the hole is smaller, the image will
get sharper, but darker. A lens is a piece of refracting material shaped so as to
focus light.

Axis

Center

Aperture

Focal PointFocal Point

Focal length (f)

Slicing plane

Focal length (f)

World point

FIGURE 27.10: The inset shows a 3D drawing of the abstract thin lens – a plane with
a circular aperture and refractive material in the aperture. This is more usually
drawn in 2D (as in Figure 27.11). The 2D drawing shows a section of the 3D
geometry cut by a plane through the axis of the lens and the world point of interest.

27.2.1 The Thin Lens

The simplest abstract model of a lens is a thin lens. A thin lens can be modelled as a
plane with a circular hole in it. The center of this hole is the center of the lens. The
line perpendicular to the plane and passing through the focal point is the axis of the
lens. Light leaves some point in the world and arrives at the lens. The geometry of
the lens determines where this light ends up. Slice the 3D geometry with a plane
through the axis and the point of interest, as in Figure 27.10). The geometry of
the lens is most easily understood using a drawing on this plane (Figure 27.11).
Associated with any thin lens are (a) its focal length (traditionally written f : more
detail below) and (b) its aperture (the circular hole). The focal length defines two
focal points on the axis of the lens, one on either side of the lens and each one focal
length away from the center of the lens.
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FIGURE 27.11: A slice of the 3D drawing of Figure 27.10 by a plane through the
axis and the world point: the dot-dashed line is the axis of the lens, and the dashed
line shows the aperture. The world point defines a plane normal to the axis of the
lens (and so parallel to the plane of the lens) shown here as a line. This world
plane is w away from the center of the lens. The point that the world point images
to can be constructed using the properties of the lens. Light path I shows a ray of
light entering the lens perpendicular to the plane of the lens and emerging to pass
through the focal point on the other side. Light path II shows a ray of light passing
through the focal point on one side then striking the lens and emerging parallel to
the axis of the lens on the other side. These two rays intersect in a point. This
point – the image of the world point, or the image point – in turn defines a plane,
normal to the axis of the lens and passing through the image point, which is d away
from the center of the lens. Any point on a given world plane will image to some
point on the corresponding image plane. Light path III is a ray leaving the world
point and passing through the center of the lens without changing direction. It is
an exercise to show that this ray will pass through the image point.

Thin lenses have three properties that apply to rays of light that strike the
lens aperture.

• Any ray of light entering the lens perpendicular to the plane of the lens will
emerge to pass through the focal point on the other side.

• Any ray of light passing through the focal point on one side then striking the
lens will emerge parallel to the axis of the lens on the other side.

• Any ray of light striking the center of the lens passes through lens without
changing direction.

All rays of light that strike the plane of the lens outside the aperture are absorbed.
Now place a plane perpendicular to the axis at w from the lens center. Call this
the world plane. From these properties, it is straightforward to establish that three
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specific rays of light leaving a point on this plane and entering the lens are focused
to arrive at a corresponding point on a second plane on the other side (the image
plane). Figure 27.11 shows the construction. It is an exercise to show that the
image plane is d from the lens center, where

1

w
+

1

d
=

1

f
.

It is a property of the lens that all rays leaving the world point and entering the
lens will arrive at the image point. The image point of a lens will be brighter than
the image point from a pinhole camera, because it collects power from more of the
directions leaving the world point. The larger the aperture of the lens, the more
power it collects from a world point (roughly, because it collects more rays).

For many cameras, the lens is at a fixed distance from the imaging device.
Any point that lies on the world plane will be imaged as a point on the image plane,
but points off the world plane will image as small circles on the image plane. These
circles are sometimes known as circles of confusion. As Figure 27.12 shows, the
radius of the circles of confusion grows as the point being imaged moves away from
the world plane. If the circle of confusion is small enough (say, radius less than rc),
the point is in focus. There is a range of depths, known as the depth of field, where
points are in focus because the radius of the circle of confusion is small enough.

Changing the aperture of the lens changes the depth of field, as Figure 27.13
shows. A larger aperture will collect more light, but have smaller depth of field. A
smaller aperture will collect less light but have larger depth of field. As the aperture
becomes arbitrarily small, the camera is more like a pinhole camera.

27.2.2 Lens Systems

Very few cameras have just one thin lens. In modern cameras, achieving an image
that is both bright and focused is the job of the lens system. There may be one or
several lenses that light passes through before reaching the sensor at the back of
the camera. Thin lens concepts (focal length; aperture; circle of confusion; depth
of field) apply to a lens system, though the details of the definitions require some
adjusting. It is usually possible to adjust the aperture of the lens system, and it
is often possible to change the focal length. Lenses tend to be heavy relative to
cameras. The shape and position of the lenses, together with the refractive index of
the materials they are built of, determine the path that light follows through the lens
system. Generally, the lens system is designed to collect as much light as possible at
the input and produce a focused image on the image plane. Remarkably, most lens
systems result in an imaging geometry that can be modelled with a pinhole camera
model, and lens system effects are ignored in all but quite specialized applications
of computer vision.

Lens systems are designed and modelled using geometric optics, but lens de-
signs always involve compromises. The result is that cameras with lenses differ
from pinhole cameras in some ways that are worth knowing about, although they
are not always important. Manufacturing difficulties and cost considerations mean
that lenses can display various inconvenient properties. Lenses may cause geomet-
ric distortions of the image. The most noticeable effect of these distortions is that
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FIGURE 27.12: In the top figure, the world point has moved towards the lens from
the original world plane of Figure 27.11, and in the bottom figure it has moved
away from the lens. In each case, the image point has moved away from the image
plane. The dashed lines show the rays used to construct the location of the image
point. The full lines indicate rays that just enter the aperture of the lens. The
family of rays leaving the world point focuses on the image point, and so creates
a small circle on the image plane. The radius of this circle will be increased by
increasing the aperture.

straight lines in the world may project to curves in the image. Most common is bar-
rel distortion, where a square is imaged as a bulging barrel; pincushion distortion,
where the square bulges in rather than out, can occur (Figure 27.14). Geometric
distortions can be calibrated away (Section ??). Lenses can display chromatic aber-
rations, where colors are less crisp at boundaries and objects have “halos” of color.
Chromatic aberration occurs because light of different wavelengths takes slightly
different paths through a refracting object. Various lens coatings can correct chro-
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FIGURE 27.13: This figure compares a thin lens with a large aperture (top) to one
with a small aperture (bottom). The dashed lines show the rays used to construct
the location of the image point. The full lines indicate rays that just enter the
aperture of the lens. The family of rays leaving the world point focuses on the
image point, and so creates a small circle on the image plane. Notice that for
the same location of the world point, the circle of confusion is smaller for the lens
with smaller aperture. This means that the depth of field of the lens will be larger,
because the image point will be in focus (i.e. have a circle of confusion smaller than
the critical radius) for a larger range of depths to the world.

matic aberration, but the resulting lens system will be more expensive (I am not
aware of methods that can calibrate chromatic aberrations for a given lens). In
most lens systems, the periphery of the image tends to be brighter than it would
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be in a pure pinhole camera. For more complex lens systems, an effect in the lens
known as vignetting can darken the periphery somewhat.

Neutral grid Barrel distortion Pincushion distortion

FIGURE 27.14: On the left a neutral grid observed in a non-distorting lens (and
viewed frontally to prevent any perspective distortion). Center shows the same
grid, viewed in a lens that produces barrel distortion. Right, the same grid, now
viewed in a lens that produces pincushion distortion.

Remember this:

• Lens systems ensure the image is both bright and focused. For our
purposes, the concepts associated with a thin lens are sufficient to
describe a lens system.

• Lens systems have a focal length which determines which world plane
will be focused on the imaging device. Points off this world plane
will be imaged as circles of confusion. A sufficiently small circle of
confusion means the point is in focus. The depth of field of the lens
is the volume in 3D of points that are in focus.

• Lens systems have an aperture. A larger aperture admits more light
and results in a brighter image, but results in a smaller depth of field.
A smaller aperture admits less light and results in a darker image,
but results in a larger depth of field.

• A camera with a lens system can usually be modelled as a pinhole
camera.

• Lenses can cause geometric distortions; these can be calibrated away.

• Lenses can cause color distortions, which are hard to remove.
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27.3 THE IMAGE SENSOR

Very bright sunlight is very much brighter than faint starlight (the factor is about
109). A complex interaction between mechanical systems in the iris of the eye,
chemical systems in the photoreceptors, and neural systems in the retina, optic
nerve and brain means that people can see in either illumination condition. How-
ever, for a single scene the dynamic range (ratio of brightest intensity to darkest
intensity) is rather smaller than 109, but still big enough to present serious engi-
neering challenges.

27.3.1 Film

Not that long ago, cameras mostly sensed light through changes to chemicals in a
film at the back of the camera. This process is intrinsically non-linear. If a small
amount of light arrives at a location, a small fraction of chemical will change. This
means that if slightly more light arrives, there is still a lot of unchanged chemical to
react. If a large amount of light arrives, a large fraction of the chemical will change,
so that if more light arrives, there is little chemical left to react and the increase
in response is smaller. However, it will take a great deal of light to cause all of
the chemical to react. When an increase in the amount of light causes no increase
in the response of the sensor, the sensor is said to be saturated. The non-linear
property of film is convenient – film can measure light over a very wide dynamic
range without saturating.

27.3.2 Electronic Sensors

The intensity of light travelling through a point in space in some direction is rep-
resented with a unit known as radiance. The intensity of light arriving at a point
on a surface averaged over some range of directions is known as irradiance. Sensors
average the irradiance over the area of a pixel to obtain incoming power P . This
power is summed for some time period ∆t – the shutter interval – to obtain the
amount of energy the pixel receives. In turn, the energy determines the pixel in-
tensity value reported by the imaging system. A property called reciprocity means
that the response is a function of P∆t alone. In particular, we will get the same
outcome if we collect power P for time ∆t or collect power P/k for time k∆t.

The sensors in modern cameras are solid-state electronic devices and so are
linear. These sensors function over a significantly smaller dynamic range than those
in the eye. The range depends on the camera, but sensors typically have a range
between about 1000:1 (for simple consumer cameras) to 20, 000:1 (very high end
sensors). Most cameras encode intensity with 8 or sometimes 10 bits. This range
tends to be narrower than the range over which the sensor will function, and the
sensor response is adjusted in software to compress the range of observed intensities.

27.3.3 The Camera Response Function

The camera response function or CRF determines what value is reported at each
location. The response that the camera produces is obtained by applying the camera
response function to P∆t. The fact that there is a camera response function is easily
observed (Figure 27.15). Now write X for a point in space that projects to x in
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Canon Powershot S60 Olympus E500 Pentax K10D

FIGURE 27.15: It is easy to see the effects of camera response functions by looking
at images. The bottom row shows images of the same scene, taken with different
cameras. The top shows plots of the red intensity along the line. Top left is the
red intensity – the cameras have given different outputs for the same scene. This
might be the result of different camera gains or changes in the illumination, but the
top right shows these cross sections scaled and translated to align with the Canon
cross-section. They do not lie on one another, establishing that whatever happened
isn’t just a scaling of the intensity values, so is not caused by camera gain or by
change in illumination. This figure was constructed from the dataset published
at https: // github. com/ zyfccc/ Representing-camera-response-function ,
described in the paper “Representing Camera Response Function by a Single La-
tent Variable and Fully Connected Neural Network”, by Y. Zhao, S. Ferguson, H.
Zhou and K. Rafferty in Signal, Image and Video Processing, 2022.

the image, PX→x for the power that leaves the patch and is collected at the pixel,
C(·) for the camera response function, E for the energy collected at the sensor, and
Icamera(x) for the intensity reported by the camera at x. Then our model is:

Icamera(x) = C(E) = C(PX→x∆t).

Camera response functions must fit a larger range of light intensities into the
relatively small dynamic range encoded by the digitized pixel values. Typical cam-
era response functions do so by “stretching” the camera response to dark pixels and
“squashing” the response at bright pixels (Figure 27.16). A rather rough argument
about albedo (written ρ, details in Section 22.6) justifies the stretching/squashing
strategy. One would like to be able to resolve some fixed change in albedo ∆ρ in
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FIGURE 27.16: Camera response functions for three different cameras, plotted
from the comprehensive dataset available at https: // cave. cs. columbia. edu/
repository/ DoRF . The horizontal axis is the “input” – the P∆t observed by the
camera, scaled to 0 − 1. The vertical axis is the “output” – the response of the
camera, again scaled to 0 − 1. Small inputs are “stretched” and large inputs are
“squashed”.

the image. When the input is small (i.e. dark), a small change will result in a
big change of output. In turn, dark regions of the scene (where the shading is s,
and quite small) produce dark image regions where one can resolve different scene
brightnesses that are quite close. So one can resolve sρ and s(ρ+∆ρ), which will be
rather close because s is small. When the input is large (i.e. bright), a large change
in input is needed to produce a small change in output. In bright regions of the
scene (where the shading is S and quite large), quite a large change in brightness is
required to produce a change in image intensity that can be resolved. In this case,
Sρ and S(ρ+∆ρ) will be quite far apart, but we can still resolve them.

In principle, pixel values are hard to interpret when the camera response
function is unknown. In practice, it is quite usual to assume that cameras are
linear and proceed without comment. This practice is widespread because for many
applications it is successful. For some applications, it is helpful to know the camera
response function. For some cameras, one can simply look up the camera response
function. Alternatively, camera response functions can be calibrated from images
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using one of a variety of methods (Section 28.4.3). Camera response functions are
always monotonic, and tend to have a quite simple form, so that estimation is quite
reliable.

Many cameras are willing to report a RAW image, which is (typically) a
direct report of what the sensor observed. If one has access to the camera, then
RAW images are often very useful. For example, one does not need to know the
CRF. Most “found” images – those observed on the internet, say, or the ones your
relatives send you – are not RAW images.

27.3.4 High Dynamic Range Imaging

One reason to know a camera response function is high dynamic range imaging or
HDR imaging. It is quite easy to find scenes where the dynamic range is so big
that images in a reasonable camera lose information. Either the brightest points
are saturated or the darkest points are very close to zero, or both. Color and
relative intensity information is then lost. Now imagine we obtain two images of
the scene, one with a neutral density filtthe camera and another However, if we
have multiple images of the scene, obtained with different values of ∆t, then we
can recover information that would otherwise be lost. Using a small ∆t will allow
very bright locations to be measured accurately (though mid range locations will
be dark, and dark locations will be lost). Similarly, using a large ∆t will allow
very dark locations to be measured accurately (though mid range locations will
be bright, and bright locations will be lost). If the CRF is known, then for each
location at each ∆ti we can compute the value of E∆ti and so recover E for each
location with higher precision than any single image allows. Many modern cameras
are willing to perform this computation with minimal provocation.
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PROBLEMS

27.1. Passing from left to right handed coordinate systems is straightfor-
ward.
(a) Show that the coordinate system obtained by reversing the direction of

the z-axis in Figure 27.1, but otherwise leaving the figure unchanged, is a
right handed coordinate system.

(b) Show that in this coordinate system, the camera images a 3D point X to
a point x on the image plane by:

X =

 X
Y
Z

→

 fX/Z
fY/Z
−f

 = x.

27.2. Lines map to lines: A pinhole camera with focal point at the origin and
image plane at z = f views a line in 3D given by u + tw, where t is the
parameter along the line. Write w = [w1, w2, w3]

T , etc. and use a left-handed
coordinate system as in Figure ??.
(a) Show that this line projects to the parametric curve in the image given

by (
f
u1 + tw1

u3 + tw3
, f

u2 + tw2

u3 + tw3

)
.

(b) Now write

(x(t), y(t)) =

(
f
u1 + tw1

u3 + tw3
, f

u2 + tw2

u3 + tw3

)
.

Show that

[u2w3 − u3w2]x(t)− [u1w3 − u3w1] y(t) + [u1w2 − u2w1] = 0

and use this to argue that the curve is a line except when either u =
(0, 0, 0)T or v = (0, 0, 0)T .

(c) What happens when u = (0, 0, 0)T ? and when w = (0, 0, 0)T ?
(d) The signs and permutations of the subscripts in the previous subexercise

should suggest a determinant is involved; it is. Show that

c =

 u2w3 − u3w2

−u1w3 + u3w1

u1w2 − u2w1


has the properties: cTu = 0; and cTw = 0.

(e) Write

M =

 u1 w1 c1
u2 w2 c2
u3 w3 c3


and show that the determinant of M is 0.

27.3. Vanishing points: A pinhole camera with focal point at the origin and image
plane at z = f views two parallel lines u + tw and v + tw. Write w =
[w1, w2, w3]

T , etc. and use a left-handed coordinate system as in Figure ??
(a) Show that the vanishing point of these lines, on the image plane, is given

by (f w1
w3

, f w2
w3

)T .
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27.4. Planes have horizons: A pinhole camera with focal point at the origin and
image plane at z = f views two parallel lines u+ tw and v + tw. Write w =
[w1, w2, w3]

T , etc. and use a left-handed coordinate system as in Figure ??
Now we parametrize the direction of the lines by writing w(r, s) = ra + sb,
for (r, s) parameters. A pair of parallel lines in the direction w(r, s) is given
by u+ tw(r, s) and v + tw(r, s).
(a) Show that all the lines parametrized in this way lie on a single plane,

shared by all lines.
(b) Now show that the vanishing point for the (r, s)’th pair of lines is(

f ra1+sb1
ra3+sb3

f ra2+sb2
ra3+sb3

)
.

(c) The collection of vanishing points given by changing the values of r and s
is a parametric curve in the image, even though there are two parameters.
Show this by substituting r′ = kr and s′ = ks for some k ̸= 0 and seeing
what happens to the collection.

(d) Show that this parametric curve is a straight line in the image. Do this
by using the results of the previous subexercise to show that the curve
parameterized by (r, s) is the same as the curve parametrized by (1, s/r)
(and ignoring the case where r = 0 for the moment). Now use the results
of the previous exercise to construct c such that cT a = cTb = 0. Now
write (

x(1, s/r)
y(1, s/r)

)
=

(
f
a1+(s/r)b1
a3+(s/r)b3

f
a2+(s/r)b2
a3+(s/r)b3

)
and use the results of the previous exercise to show that c1x(1, s/r) +
c2y(1, s/r) + c3 = 0.

(e) Use the results of the previous subexercise to argue that observing the
horizon of a plane in a perspective camera yields the coefficients of the
normal of that plane with respect to the camera’s coordinate system.

27.5. On images of planes, closer to the horizon is further away: Write
x and x′ for two image points that are the image of two points X and X′

lying on a world plane that isn’t parallel to the image plane. Write dh(x) for
the perpendicular distance from x to the horizon of that plane, etc. Write
df (X) for the distance from the focal point to X. Advice: This problem is
very easily worked with a drawing (start with Figure 27.7) but something of a
nuisance if you write out the algebra and thrash.
(a) Show that

dh(x
′) > dh(x) ≡ df (X

′) > df (X).

(b) Show that
dh(x

′) = dh(x) ≡ df (X
′) = df (X).

(c) Now if
dh(x

′) < dh(x)

what happens? (Hint: swap the names of the points).
(d) What happens if the world plane is parallel to the image plane?

27.6. (a) Do parallel lines have a vanishing point in a scaled orthographic camera?
Why?

(b) Does a plane have a horizon in a scaled orthographic camera? Why?
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27.7. Foreshortening: A pinhole camera with focal point at the origin and image
plane at z = f views a circle in the world (and lying on a world plane, as circles
do). Advice: This problem is very easily worked with a drawing, harder if
you write out the algebra and thrash, and very hard if you don’t know (or look
up) anything about conic sections.
(a) Construct the family of lines joining the points on the circle with the focal

point. Show that this is a right circular cone whose axis is the line joining
the center of the circle to the focal point.

(b) Show that the image of this circle will be a circle if the world plane is
parallel to the image plane.

(c) Show that the image of this circle will be a parabola if the axis of the cone
is parallel to the image plane.

(d) Show that the image of this circle could be an ellipse or one branch of a
hyperbola.

27.8. Foreshortening: A pinhole camera with focal point at the origin and image
plane at z = 10 views a rectangle in the world. The vertices of the rectangle
are

v1 =

 0
1
15

 , v2 =

 1
1
15

 , v3 =

 1
2
20

 and v4 =

 0
2
20


What is the image of the rectangle?

27.9. Foreshortening in scaled orthographic cameras: A scaled orthographic
camera with image plane at z = 0 views a circle in the world (and lying on a
world plane, as circles do). Advice: This problem is easier if you write out
the algebra and thrash, as long as you use a sensible coordinate system. A
drawing might help get that coordinate system.
(a) Construct the family of lines perpendicular to the image plane and passing

through points on the circle. Show that this is a cylinder, but it’s cross
section may not be a circle.

(b) Show that the cross-section of this cylinder is an ellipse.
(c) What difference does the choice of scale make?
(d) Does the choice of Z-value where the image plane is located make any

difference at all (i.e. what happens when the image plane is z = c, for c
some constant different from zero)?

27.10. Foreshortening in scaled orthographic cameras: An orthographic cam-
era camera with image plane at z = 10 views a rectangle in the world. The
vertices of the rectangle are

v1 =

 0
1
15

 , v2 =

 1
1
15

 , v3 =

 1
2
20

 and v4 =

 0
2
20


(a) What is the image of the rectangle?
(b) What shows that the rectangle has been foreshortened?

27.11. Foreshortening in orthographic cameras: An orthographic camera cam-
era with image plane at z = 10 views a line segment in the world. The line
segment is given by u+ tw, where 0 ≤ t ≤ L, the length of the line segment is
L, and

w =

 cos θ cosϕ
sin θ cosϕ

sinϕ


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(which is a unit vector).
(a) What is the length of the projected line segment? Advice: This is much

easier if you remember that the length of a line segment does not change
if you translate it.

(b) A line segment of known length L is viewed in a scaled orthographic
camera. Show that it is possible to recover most of the configuration of
the 3D line segment from the image, but there is a two-fold ambiguity
and the distance to the line segment is unknown.

27.12. Refer to Figure 27.11 for thin lens notation. In this figure, d, w, f , h and g
are distances, and so have positive sign.
(a) Use ray I and similar triangles to show that

h

f
=

g + h

d

(b) Use ray II and similar triangles to show that

g

f
=

g + h

w

(c) Use ray III and similar triangles to show that

g

d
=

h

w

(d) Now use ray I and ray II to show that

1

d
+

1

w
=

1

f

(e) Three rays do not, in general, intersect at one point. Show that rays I, II
and III leaving the point (w, h) intersect at the point (−d,−g). Do this
by showing that the intersection point for ray I and ray III is(

− fw

w − f
,− hf

w − f

)
and the intersection point for ray II and ray III is the same point.

27.13. All points on the projective plane with homogeneous coordinates (U, V, 0)
lie “at infinity” (divide by zero). As we have seen, these points form a
projective line.
(a) Show this line is represented by the vector of coefficients (0, 0, C).
(b) A homography M =

[
mT

1 ;m
T
2 ;m

T
3

]
is applied to the projective

plane. Show that the line whose coefficients are v3 maps to the
line at infinity.

(c) Now write the homography asM = [m′
1,m

′
2,m

′
3] (som

′ are columns).
Show that the homography maps the points at infinity to a line
given in parametric form as sm′

1 + tm′
2. Now write n for a non-

zero vector such that nTm′
1 = nTm′

2 = 0. Show that n is the
vector of coefficients for the image of the line at infinity in the
homography. Is n unique?


