CHAPTER 5

Applications of Convolution

5.1 FINDING PATTERNS
5.1.1 Representing Images with Filter Banks

In the image in Figure 4.3, the leaves of the pineapple plant look like disorganized
thick stripes. The leaves of the plant at its base are quite different, and look more
like repeated small spots. These are examples of textures — somewhat unstructured
patterns that are quite characteristic. Textures are widespread and quite distinctive
— a field of pebbles looks quite different from a stand of corn; a cluster of pine needles
looks very different from an expanse of bark; and so on.

Figure 4.3 also suggests a way to represent textures, and so images. Think
of a texture as a collection of small patterns, arranged in some distinctive way.
An image region showing a field of pebbles would have many spots, some small,
some large and most medium, but very few thin bars. In contrast, an image region
showing a cluster of pine needles would have many thin bars, pointing in about the
direction, but very few small or large spots. Then to build an image representation:
(a) construct a vocabulary of patterns; (b) find out which patterns are present at
which pixel; and then (c) building a summary of which patterns are present in a
region.

Because the patterns are likely so variable, an elaborate or detailed pattern
detector is likely to be unhelpful — something that precisely detects a pine needle
would need to be tuned to exactly the right angle, which would be a nuisance — so
it is natural to use filters as pattern detectors. However, it is helpful to distinguish
between, say, light thin bars on dark backgrounds (possible pine needles) and dark
thin bars on light backgrounds (possible gaps between needles).

For the moment, assume the vocabulary of patterns is given, represented as a
filter bank. Then the next two steps are straightforward. To find the patterns in an
image, construct the response of all the filters at all points and apply a ReL.U. Stack
these responses into a multi-channel image. To compute a summary, construct a
local weighted average of each channel of the multi-channel image at each pixel.

5.1.2 Computing Image Gradients with Finite Differences

For an image Z, the gradient is

0L 0L,y

)

which we could estimate by observing that

Or sz—0 ox

0T . I(x+dz,y) — L(z,y)
1 X Lit1,5 7Ii,j-

67

68 Chapter 5 Applications of Convolution

horizontal vertical

0.01

0.1

FIGURE 5.1: Finite differences yield reasonable derivative estimates, but are strongly
affected by noise. Top left shows the original image, from which a detail window
1s extracted and turned monochrome. Rows show image, horizontal derivative and
vertical derivative, where derivatives are estimated by finite differences. First row
is moise free image; others have additive Gaussian noise added, with standard de-
viation shown. Notice how this noise affects derivatives. The derivatives are scaled
so that positive values are bright, negative values are dark, and 0 is mid-range.
However the scale is chosen per row, which means the figure understates the effect
of noise. In the noisy rows, the largest magnitude derivatives are much larger than
in the clean row, which is why you can hardly see significant derivatives in the bot-
tom row. Image credit: Figure shows Robert Forsyth’s photograph of historical dock
pilings in Lake Michigan.

Section 5.1 Finding Patterns 69

Kernel sigma ->

no noise

FIGURE 5.2: Smoothing an image with a gaussian kernel is an effective way to
suppress additive Gaussian noise. Left column the original image, followed by
versions smoothed with a gaussian kernel with o =1, 0 = 2, 0 = 3 and o = 4.
Top row shows results on a noise free image; middle row shows results on an
tmage with additive stationary gaussian noise with standard deviation 0.01, where
the value of a pizel ranges from 0 to 1; bottom row shows results on an image
with additive stationary gaussian noise with standard deviation 0.1. Notice how
(a) smoothing blurs the original image; (b) more smoothing leads to more blur; (c)
smoothing suppresses noise (so a smoothed version of a noisy image is close to the
smoothed version of the original); and (d) more smoothing suppresses more noise.
Image credit: Figure shows Robert Forsyth’s photograph of a goby on its nest in
Lake Michigan.

This means a convolution with

-1 1

will estimate 9Z/0x (nothing in the definition requires convolution with a square
kernel). Notice that this kernel “looks like” a dark pixel next to a light pixel,
and will respond most strongly to that pattern. By the same argument, 0Z/0y ~
Zij+1 — Z; ;. These kinds of derivative estimates are known as finite differences.
most unsatisfactory estimate of the derivative. This is because finite differences
respond strongly (i.e., have an output with large magnitude) at fast changes, and
fast changes are characteristic of noise. Roughly, this is because image pixels tend to
look like one another. For example, if we had bought a discount camera with some
pixels that were stuck at either black or white, the output of the finite difference
process would be large at those pixels because they are, in general, substantially
different from their neighbors. All this suggests that some form of noise suppression
is appropriate before differentiation.

70 Chapter 5 Applications of Convolution

Kernel sigma ->
Original 1 2 3

FIGURE 5.3: Images at various noise levels smoothed with various gaussian kernels.
The noise here involves picking pixel locations uniformly at random in the image,
then flipping them either full light or full dark. The number on the far right shows
the probability of a pizel being flipped (so at 0.001, a 30 x 30 window should have
about one flipped pixel in it; at 0.01, a 10 x 10 window should have about one flipped
pizel in it; and at 0.1, a 3 x 3 window should have one flipped pizel in it). Left the
original image, followed by versions smoothed with c =1, 0 =2, 0 =3 and 0 = 4.
Notice how (a) smoothing blurs the original image; (b) more smoothing leads to
more blur; (¢) smoothing suppresses noise (so a smoothed version of a noisy image
is close to the smoothed version of the original); and (d) more smoothing suppresses
more noise. The noise-free image is top left in Figure 5.2. Image credit: Figure
shows Robert Forsyth’s photograph of a goby on its nest in Lake Michigan.

Remember this: Images can be represented using the outputs of multi-
ple filters, formed into a bank. Convolutions with simple filter kernels will
find the x- and y-derivatives of an image, yielding the image gradient. This
gradient estimate is significantly affected by image noise.

5.2 DENOISING
5.2.1 Suppressing Noise with Filters

The simplest model of image noise is the additive stationary Gaussian noise (or
Gaussian noise) model, where each pixel has added to it a value chosen indepen-
dently from the same normal (Gaussian — same Gauss, different sense) probability
distribution. This distribution almost always has zero mean. The standard devi-
ation is a parameter of the model. Figure 5.2 shows some examples of additive
stationary Gaussian noise.

Section 5.2 Denoising 71

Images can be quite effectively denoised because “pixels look like their neigh-
bors”. This important and very reliable slogan is in scare quotes because, while
it is an extremely important practical guide, making it precise is neither easy nor
particularly useful. Generally, pictures show objects which are span a large number
of pixels, and where the shading changes relatively slowly over the surface of the
object. This means that the value at a pixel is likely to be close to the value at
its neighbor. Although this isn’t true of every pixel — otherwise there wouldn’t
be edges in images — it is true of most pixels. If you have a pixel whose value is
unknown, looking at its neighbors will almost always yield a good estimate. A pixel
that does not look like its neighbors is suspect.

Check that the smoothing used in the downsampling strategy of Section 2.3.4
is a convolution with a gaussian kernel. This procedure is called gaussian smoothing
or very often just smoothing. It turns out that this procedure is very good at
suppressing many kinds of image noise. Figure 5.2 shows examples of suppressing
additive Gaussian noise, and the exercises explore some details. Gaussian
smoothing can suppress the effects of other noise processes, too (Figure 5.3).

The choice of o (or scale) for the Gaussian follows from the following consid-
erations:

o If the standard deviation of the Gaussian is very small—say, smaller than one
pixel—the smoothing will have little effect because the weights for all pixels
off the center will be very small.

e For a larger standard deviation, the neighboring pixels will have larger weights
in the weighted average, which in turn means that the average will be strongly
biased toward a consensus of the neighbors. This will be a good estimate of a
pixel’s value, and the noise will largely disappear at the cost of some blurring.

e Finally, a kernel that has a large standard deviation will cause much of the
image detail to disappear, along with the noise.

Most image noise tends to result in pixels not looking like their neighbors.
However, gaussian smoothing is not always effective at estimating the true value
of noisy pixels. For example, look closely at Figure 5.3. The noise process — a
Poisson noise process, sometimes called salt and pepper noise — picks pixel locations
uniformly at random in the image, then flips the result either full light or full dark.
This means that a noisy pixel contains no information, and might be very different
from its neighbors. If you compute a weighted average in a region that contains a
noisy pixel, that weighted average might be severely disrupted by the noise, even
if the center is a clean pixel. For example, think of a dark neighborhood on the
goby where noise has turned one pixel bright — the bright pixel will dominate the
average unless it contains a very large number of pixels with quite large weights.
And in that case, the image will be blurry.

This suggests the entirely natural alternative of computing a median in a
neighborhood as an estimate of the value at a pixel. As Figure 7?7 shows, this can
be very effective at suppressing noise. Notice an attractive feature of the median
filter — it tends not to blur edges, even when it strongly smoothes the interior of
image regions. Median filters are somewhat more expensive computationally than

72 Chapter 5 Applications of Convolution

Window size ->
Original 3 5 7 9

0.001

0.01

FIGURE 5.4: Images at various noise levels smoothed with a median filter. The
noise here involves picking pixel locations uniformly at random in the image, then
flipping them either full light or full dark. The number on the far right shows the
probability of a pizel being flipped (so at 0.001, a 30 x 30 window should have about
one flipped pizel in it; at 0.01, a 10 x 10 window should have about one flipped
pizel in it; and at 0.1, a 3 X 3 window should have one flipped pizel in it. Left
the original image, followed by versions where the median is taken in windows of
different sizes. Notice how (a) the median filter preserves edges rather well, even
over big windows; (b) bigger windows lead to more noise suppression; and (c) texture
details are suppressed by the median, with bigger windows suppressing more. Image
credit: Figure shows Robert Forsyth’s photograph of a goby on its nest in Lake
Michigan.

smoothing, but deal fairly well with additive gaussian noise as well as salt and
pepper noise (Figure 5.5)

5.2.2 Application: Derivative of Gaussian Filters

Because convolution is associative, smoothing an image and then differentiating
it is the same as convolving it with the derivative of a smoothing kernel. First,
differentiation is linear and shift invariant. This means that there is some kernel
that differentiates. Given a function I(z,y),

ol

% = K(B/Ba:) * 1.
Write the convolution kernel for the smoothing as S. Now
08

Usually, the smoothing function is a gaussian, so an estimate of the derivative can
be obtained by convolving with the derivative of the gaussian (rather than convolve

Section 5.2 Denoising 73

Window size ->
Original 3 5 7 9

no noise

FIGURE 5.5: Images at various noise levels smoothed with a median filter. The noise
here is additive Gaussian noise. Left the original image, followed by versions where
the median is taken in windows of different sizes. Top row shows results on a noise
free image; middle row shows results on an image with additive stationary gaus-
sian noise with standard deviation 0.01 (where the value of a pizel ranges from 0 to
1); bottom row shows results on an image with additive stationary gaussian noise
with standard deviation 0.1. Notice how (a) the median filter preserves edges rather
well, even over big windows; (b) bigger windows lead to more noise suppression; and
(c) texture details are suppressed by the median, with bigger windows suppressing
more. Image credit: Figure shows Robert Forsyth’s photograph of a goby on its nest
i Lake Michigan.

and then differentiate), yielding

09, _ 1 [-z] - ('+y?
dr 2mo? | 202 P 202

09, _ 1 [=w] . (T+y
dy 2mo? 202 P 202

As they should (Section ?7), derivative of gaussian filters look like the effects they
are intended to detect. The x-derivative filters look like a vertical light blob next
to a vertical dark blob (an arrangement where there is a large z-derivative), and so
on.

Large gradients in images are interesting (Chapters ?? and ?7?) because they
tend to occur on the outlines of objects, at shadow boundaries, and so on. Generally,
if there is a large x derivative at a pixel, there will be a large x derivative at
neighboring pixels. Smoothing across the direction of the derivative may result in
smeared or blurred derivatives; but smoothing along the direction of the derivative
will tend to average the value at points with similar derivatives and improve the

74 Chapter 5 Applications of Convolution

Noised u < Filters ->» n

0.01

FIGURE 5.6: Derivative of gaussian filters, equivalent to applying a finite difference
to a smoothed image, very significantly improve estimates of derivatives. Compare
this figure with Figure 5.1. Rows show image, horizontal derivative and vertical
derivative, where derivatives are estimated by convolution with difference of gaus-
sian filters. The filters are shown at the top. As you should expect, one looks like
a dark bar next to a light bar, the other looks like a dark bar below a light bar. As
should be apparent from the filters, the smoothing is the same in each direction.
First row is noise free image; others have additive Gaussian noise added, with
standard deviation shown on the right. Notice how this noise hardly affects deriva-
tives. The derivatives are scaled so that positive values are bright, negative values
are dark, and 0 is mid-range. Although the scale is chosen per row, the derivative
1mages look the same from row to row — this means that each row has about the same
largest magnitude value. Image credit: Figure shows Robert Forsyth’s photograph
of historical dock pilings in Lake Michigan.

Section 5.2 Denoising 75

Noised [# <« Filters >

0.01

0.1

FIGURE 5.7: Derivative of gaussian filters, equivalent to applying a finite difference
to a smoothed image, very significantly improve estimates of derivatives. Compare
this figure with Figure 5.1. As should be apparent from the filters, the smoothing
is over a much larger range along the derivative direction than across it (compare
Figure 5.6). Image credit: Figure shows Robert Forsyth’s photograph of historical
dock pilings in Lake Michigan.

noise resistance. It is quite usual to use
9o 1 —x 22 n y?
- p— - — | exp — N
Oz 2nosop | 202 P 207 202
995 1 [~y a? |y
—_— — — | e — [ER—
Ay 2rosop | 202 P 20} * 202

where o, > 0. Smoothing results in much smaller noise responses from the deriva-

76 Chapter 5 Applications of Convolution

tive estimates, and more smoothing yields less noisy, but more blurry, gradients
(Figure 5.6 and 5.7).

Remember this: Smoothing with a Gaussian will denoise images. An
alternative that works better for some kinds of noise is a median filter, which
is not linear and is not a convolution. Smoothing with a Gaussian then
differentiating will obtain an image gradient estimate that is less sensitive to
noise. This process is better represented as convolution with the derivative
of Gaussian.

5.3 SAMPLING, INTERPOLATION AND CONVOLUTION
5.3.1 Modelling a Sampled Function

Passing from a continuous function—like the irradiance at the back of a camera
system—to a collection of values on a discrete grid —like the pixel values reported
by a camera—is referred to as sampling. Sampling must lose information about
the original function (for example, see Figure 15.10). Accounting for what is lost
requires building a model of the sampling process quite carefully.

Start with a function of one dimension. Write

sample, p(f)

for an operation that takes a continuous function and returns a sampled version.
The sampled version should represent the values of f at all integer points (you can
get any other uniform grid with a scale). Another important property is that

/g(u)samplelD(f)dum/g(u)f(u)du

to the extent possible for any g(u). This constraint is quite informative. Choose

(u) = 1I/R for0<u<R
I =3 0 otherwise

and notice that for this choice
[st st

is an average of f(u) over the range 0 < u < R. To preserve this property, define a
function §(u) — a delta function or § function — by two properties

d(u) =0 for u # 0
/6(u)du =1

Section 5.3 Sampling, Interpolation and Convolution 77

Sample
P 1D

—————

I l >_ I ' ; ; >

FIGURE 5.8: Sampling in 1D takes a function and returns a vector whose elements
are values of that function at all integer points. The vector is infinite to avoid
having to write indices, etc.

so that
[it ayiu = f(a).
Now if
sample,p(f) = Z f(@)6(u — 1)
then

[stwsampre,p(nau = 3= 500
0<i<R
which is an approximation of the average.

Sampling in 2D is very like sampling in 1D. Although sampling can occur on
nonregular grids (the best example being the human retina), the most important
case has samples on a uniform grid of integer coordinates. The ¢ function now has
the properties

0(u,v) =0 foru#0orv#0
/5(u, v)dudv =1

and analogy yields

sample,(F) = ZF(L]’)(S(:E — 4,y —J)

The grid is infinite in each dimension to avoid having to write ranges, etc. (Fig-
ure 5.9).

The ¢ function is a conceptual device to make the mathematical plumbing
work properly. There is no need to place one at each sample function in an array
inside your programs. Some practical systems have samples that are not evenly
spaced. Older television sets had an aspect ratio of 4:3 (width:height), though 16:9

78 Chapter 5 Applications of Convolution

FIGURE 5.9: Sampling in 2D takes a function and returns an array; again, we allow
the array to be infinite dimensional and to have negative as well as positive indices.

is commone for more recent sets. Cameras quite often accommodated this effect by
spacing sample points slightly farther apart horizontally than vertically (in jargon,
they had non-square pizels). It is unusual to encounter these effects now.

5.3.2 Sampling and Convolution

The sampling model may look strange to you, but respects convolution and in a
useful way. Choose some continuous convolution kernel g(z,y). If you convolve
sample,(Z) with g(x,y), then sample the result, you get what you would have
gotten if you convolve Z with sample,(g). Check

sample,y(Z) x g = ZL‘;‘Q(JC — 4,y — j) =T * sampley,(g)
)
and that
> Tijglw—iy—j)
,J
is the convolution of Chapters 15.10 if you evaluate it at integer points.

5.3.3 Interpolation: Passing from Discrete to Continuous

Recall the interpolate of Section 2.2 had the form

I(xvy) = ZI”b(.’E - Zay _])
0,J

Here b is some function with the properties 5(0,0) = 1 and b(u,v) = 0 for v and
v any other grid point. This is linear and shift invariant (exercises) so it must be
a convolution. The way to see the convolution is to use the model of sampling,

Section 5.3 Sampling, Interpolation and Convolution 79

above. This exposes the convolution in interpolation. Notice that

sample,(Z) xb = //ZIij(S(x—u—i,y—v—j)b(u,v)dudv
ij

ZL‘J‘//CS(JJ—u—i7y—v—j)b(u,v)dudv
ij

ZL-jb(x — 4,y — j) from the property of a § function
i

which is the form of an interpolate.

Remember this: The process of sampling a function is modelled using
0 functions. These ensure that integrals of the sampled function have sen-
sible values. Interpolation is a process of convolution that takes a sampled
function to a continuous function.

80 Chapter 5 Applications of Convolution

5.4 YOU SHOULD

54.1

5.4.2

543
54.4

remember these terms:

Applications of convolution include representing images with a filter

bank and computing the image gradient. 58
Applications of convolution further include denoising images and ob-

taining a low-noise gradient estimate. 64
A mathematical model of sampling and interpolation. 67

remember these facts:

Applications of convolution include representing images with a filter

bank and computing the image gradient. 58
Applications of convolution further include denoising images and ob-

taining a low-noise gradient estimate. 64
A mathematical model of sampling and interpolation. 67

remember these procedures:
be able to:

e Recognize a bank of filters as a way to represent small patterns in images.

e Denoise an image by smoothing with either Gaussian or median filters.

Form a gradient estimate using derivative of Gaussian filters.

e Use the model of sampled functions in simple calculations.

Recognize interpolation as a convolution that passes from a sampled function
to a continuous function.

