CHAPTER 18

Classifying Images and Detecting
Objects

Neural networks have gone from being one curiousity in lists of classification
methods to being the prime engine of a huge and very successful industry. This
has happened in a very short time, less than a decade. The main reason is that,
with enough training data and enough training ingenuity, neural networks produce
very successful classification systems, much better than anyone has been able to
produce with other methods. They are particularly good at classifying images. As
Figure [I8T] shows, the top-5 error rate on one (very large and very hard) image
classification dataset has collapsed in quite a short period. The primary reason
seems to be that the features that are being used by the classifier are themselves
learned from data. The learning process seems to ensure that the features are useful
for classification. It’s easy to see that it might do so; the news here is that it does.

There are two important trends that have advanced this area. One is the
development of large, challenging (but not unreasonably hard) datasets, that are
publicly available and where accuracy is evaluated using conventions that are fair
and open. The second is the widespread dissemination of successful models. If
someone produces a really good image classifier, you can usually find an imple-
mentation on the internet fairly soon afterwards. This means that it’s easy to
fiddle with successful architectures and try to make them better. Very often, these
implementations come with pre-trained models.

This chapter will describe the main recent successes in image classification
and object detection using neural networks. It’s unlikely you would be able to
build anything I describe here from the text alone, but you can likely find a trained
version elsewhere. You should get a good enough grasp of what people do, what
seems to work and why to apply and use models that have been shared.

18.1 IMAGE CLASSIFICATION

I will describe several important network architectures in the following subsections,
but building any of these from scratch based only on this description would be a
heroic (and likely unsuccessful) venture. What you should do is download a version
for the environment you prefer, and play with that. You can find pretrained models
at:

https://pjreddie.com/darknet/imagenet/ (for darknet);
http://www.vlfeat.org/matconvnet/pretrained/ (for matconvnet);
https://mxnet.apache.org/api/python/gluon/model_zoo.html (for mxnet);
https://github.com/PaddlePaddle/models (for PaddlePaddle; it helps to be
able to read Chinese);
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FIGURE 18.1: The top-5 error rate for image classification using the ImageNet
dataset has collapsed from 28% to 3.6% from 2010 to 2015. There are two 201}
entries here, which makes the fall in error rate look slower. This is because each
of these methods is significant, and discussed in the sections below. Notice how
increasing network depth seems to have produced reduced error rates. This figure
uses ideas from an earlier figure by Kaiming He. Fach of the named networks is
described briefly in a section below.

e https://pytorch.org/docs/stable/torchvision/models.html (for pytorch);
e https://github.com/tensorflow/models (for tensorflow);
e https://keras.io (for Keras; look for “examples” in the sidebar).

Datasets for Classifying Images of Objects

MNIST and CIFAR-10 are no longer cutting edge image classification datasets. The
networks I described are quite simple, but work rather well on these problems. The
very best methods are now extremely good. Rodrigo Benenson maintains a website
giving best performance to date on these datasets at http://rodrigob.github.io/are_
we_there_yet/build/classification_datasets_results.html. The best error rate recorded
there for MNIST is 0.21% (i.e. a total of 21 test examples wrong in the 10, 000
example test set). For CIFAR-10, the best error rate is 3.47% (i.e. a total of 347
test examples wrong; much better than our 2,000 odd). Mostly, methods work so
well that improvements must be very small, and so it is difficult to see what is an
important change and what is a lucky accident. These datasets are now mostly
used for warming-up purposes — to check that an idea isn’t awful, or that a method
can work on an “easy” dataset.
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Remember this: MNIST and CIFAR-10 are warmup datasets. You
can find MNIST at http://yann.lecun.com/exdb/mnist/ or at http://www.
kaggle.com/c/ digit-recognizer. You can find CIFAR-10 at https://www.cs.
toronto.edu/ kriz/ cifar.html.

It is difficult to say precisely what makes a dataset hard. It is very likely
that having more categories makes a dataset harder than having few categories.
It is very likely that having a lot of training data per category makes a dataset
easier. It is certain that labelling errors and differences between test images and
training images will cause problems. Modern datasets tend to be built carefully
using protocols that try to ensure that the label for each data item is right. For
example, one can have images labelled independently, then check the labels agree.
There isn’t any way of checking to see that the training set is like the test set, but
one can collect first, then split later.

MNIST and CIFAR-10 contain pictures of largely isolated objects. A harder
dataset is CIFAR-100. This is very like CIFAR-10, but now with 100 categories.
Images are 32 x 32 color images in 100 categories, collected by Alex Krizhevsky,
Vinod Nair, and Geoffrey Hinton. There are 50, 000 training images (so now 500
per category, rather than 5,000) and 10, 000 test images, and the test-train split is
standard. Images are evenly split between the classes. The categories are grouped
rather roughly into superclasses, so that there are several different insect categories,
several different reptile categories, and so on.

Remember this: CIFAR-100 is a small hard image classification
dataset. You can download this dataset from https://www.cs.toronto.edu/
kriz/ cifar.html. CIFAR-100 accuracy is also recorded at http://rodrigob.
github.io/ are_we_there_yet/ build/ classification_datasets_results.html.  The

best error rate (24.28%) is a crude indicator that this dataset is harder
than CIFAR-10 or MNIST.

There are several important big image classification datasets. Datasets tend
to develop over time, and should be followed by looking at a series of workshops.
The Pascal visual object classes challenges are a set of workshops held from 2005-
2012 to respond to challenges in image classification. The workshops, which were
a community wide effort led by the late Mark Everingham, resulted in a number
of tasks and datasets which are still used. There is more information, including

leaderboards, best practice, organizers, etc. at http://host.robots.ox.ac.uk/pascal/
VOC/.
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Remember this: PASCAL VOC 2007 remains a standard image
classification dataset. You can find this at (http://host.robots.ox.ac.uk/
pascal/VVOC/voc2007/index.html). The dataset uses a collection of 20 ob-
ject classes that became a form of standard.

There is very little point in classifying images of objects into classes that
aren’t useful, but it isn’t obvious what classes should be used. One strategy is to
organize classes in the same way that nouns for objects are organized. WordNet
is a lexical database of the English language, organized hierarchically in a way
that tries to represent the distinctions that people draw between objects. So, for
example, a cat is a felid which is a carnivore which is a placental mammal
which is a vertebrate which is a chordate which is an animal (and so on...). You
can explore WordNet at https://wordnet.princeton.edu. ImageNet is a collection
organized according to a semantic hierarchy taken from WordNet. ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) workshops were held from 2010-2017,
organized around a variety of different challenges.

Remember this:  ImageNet is an extremely important large scale image
classification dataset. A very commonly used standard is the ILSVRC2012
dataset, with 1000 classes and 1.28 million training images. There’s a stan-
dard validation set of 50, 000 images (50 per category). You can find this
at http://www.image-net.org/ challenges/LSVRC/2012/nonpub-downloads.
The dataset uses a collection of 1000 object classes that became a form of
standard.

Datasets for Classifying Images of Scenes

Objects tend to appear together in quite structured ways, so if you see a giraffe
you might also expect to see an acacia or a lion, but you wouldn’t expect to see
a submarine or a couch. Different contexts tend to result in different groups of
objects. So in grassland you might see a giraffe or a lion, and in the living room
you might see a couch, but you don’t expect a giraffe in a living room. This
suggests that environments are broken up into clusters that look different and tend
to contain different objects. Such clusters are widely called scenes in the vision
community. An important image classification challenge is to take an image of a
scene and predict what the scene is.

One important scene classification dataset is the SUN dataset. This is widely
used for training, and for various classification challenges. There is a benchmark
dataset with 397 categories. The full dataset contains over 900 categories and many
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million images. Workshop challenges, including particular datasets used and leader-
boards, appear at http://Isun.cs.princeton.edu/2016,/ (LSUN 2016); and http://Isun.
cs.princeton.edu/2017/ (LSUN 2017). The challenges use a selected subset of the
scene categories.

Remember this:  SUN is a large-scale scene classification dataset that
has been the core of several challenge workshops. The dataset appears at
https:// groups.csail.mit.edu/ vision/ SUN/ .

Another important dataset is the Places-2 dataset. There are 10 million
images in over 400 categories, with annotations of scene attributes and a variety of
other materials.

Remember this:  Places-2 is a large-scale scene classification dataset.
You can find this at http://places2.csail.mit.edu.

18.1.3 Augmentation and Ensembles

Three important practical issues that need to be addressed to build very strong
image classifiers.

e Data sparsity: Datasets of images are never big enough to show all effects
accurately. This is because an image of a horse is still an image of a horse
even if it has been through a small rotation, or has been resized to be a bit
bigger or smaller, or has been cropped differently, and so on. There is no way
to take account of these effects in the architecture of the network.

e Data compliance: We want each image fed into the network to be the same
size.

e Network variance: The network we have is never the best network; train-
ing started at a random set of parameters, and has a strong component of
randomness in it. For example, most minibatch selection algorithms select
random minibatches. Training the same architecture on the same dataset
twice will not yield the same network.

All three can be addressed by some care with training and test data.

Generally, the way to address data sparsity is data augmentation, by ex-
panding the training dataset to include different rotations, scalings, and crops of
images. Doing so is relatively straightforward. You take each training image, and
generate a collection of extra training images from it. You can obtain this collection
by: resizing and then cropping the training image; using different crops of the same
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training image (assuming that training images are a little bigger than the size of
image you will work with); rotating the training image by a small amount, resizing
and cropping; and so on.

There are some cautions. When you rotate then crop, you need to be sure
that no “unknown” pixels find their way into the final crop. You can’t crop too
much, because you need to ensure that the modified images are still of the relevant
class, and too aggressive a crop might cut out the horse (or whatever) entirely.
This somewhat depends on the dataset. If each image consists of a tiny object on a
large background, and the objects are widely scattered, crops need to be cautious;
but if the object covers a large fraction of the image, the cropping can be quite
aggressive.

Cropping is usually the right way to ensure that each image has the same
size. Resizing images might cause some to stretch or squash, if they have the
wrong aspect ratio. This likely isn’t a great idea, because it will cause objects to
stretch or squash, making them harder to recognize. It is usual to resize images to
a convenient size without changing the aspect ratio, then crop to a fixed size.

There are two ways to think about network variance (at least!). If the net-
work you train isn’t the best network (because it can’t be), then it’s very likely that
training multiple networks and combining the results in some way will improve clas-
sification. You could combine results by, for example, voting. Small improvements
can be obtained reliably like this, but the strategy is often deprecated because it
isn’t particularly elegant or efficient. A more usual approach is to realize that the
network might very well handle one crop of a test image rather better than others
(because it isn’t the best network, etc.). Small improvements in performance can
be obtained very reliably by presenting multiple crops of a test image to a given
network, and combining the results for those crops.

Alexnet

The first really successful neural network image classifier was Alexnet, described in
“ImageNet Classification with Deep Convolutional Neural Networks”, a NIPS 2012
paper by Alex Krizhevsky, Ilya Sutskever and Geoffrey Hinton. Alexnet is quite like
the simple networks we have seen — a sequence of convolutional layers that reduce
the spatial dimensions of the data block, followed by some fully connected layers
— but has a few special features. GPU memories in 2012 were much smaller than
they are now, and the network architecture is constructed so that the data blocks
can be split across two GPUs. There are new normalization layers, and there is a
fully-connected layer that reduces a data block in size in a new way.

The impact of splitting the data blocks is quite significant. As Figure
shows, the image passes into a convolutional layer with 96 kernels followed by a
ReLU, response normalization (which modifies values in a block, but doesn’t change
its size) and maxpooling. This would normally result in a data block of dimension
55 x 55 x 96, but here each GPU gets a block consisting of the output of a different
half of the kernels (so there are two 55 x 55 x 48 blocks). Each goes through another
convolutional layer of 128 kernels (size 5 x 5 x 48), with a total of 256 kernels. The
blocks on GPU 1 and GPU 2 may contain quite different features; the block on
GPU 1 at B in the figure does not see the block on GPU 2 at A. The block at C
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FIGURE 18.2: Two views of the architecture of Alexnet, the first convolutional neu-
ral network architecture to beat earlier feature constructions at image classification.
There are five convolutional layers with ReLU, response normalization and pooling
layers interspersed. Top shows the data blocks at various stages through the net-
work and bottom shows all the layers (capital letters key stages in the network to
blocks of data). Horizontal and diagonal arrows in the top box indicate how data
is split between GPUs, details in the main text. The response normalization layer
is described in the text. I have compacted the final fully connected layers to fit the
figure in.

for each GPU is constructed using the block at B for both GPUs, but then blocks
move through the network without interacting until the dense layer (which turns
E into F). This means that features on one GPU could encode rather different
properties, and this actually happens in practice.

For each location in a block, response normalization layers then scale the value
at that location using a summary of nearby values. Response normalization like
this is no longer widely used, so I will omit details. This network was trained using
substantial data-augmentation, as above. Units in the first two layers are dropped
out with a probability of 0.5. Training uses the usual stochastic gradient descent,
but with momentum. Alexnet was a spectacular success, achieving top-1 and top-5
error rates of 37.5% and 17.0% respectively on the ImageNet ILSVRC-2010 chal-
lenge. These scores are significantly better than any other method had produced in
the past, and stimulated widespread investigation into network architectures that
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might do better.

Remember this:  Alexnet was a spectacular success at classifying Ima-
geNet images.

18.1.5 VGGNet

Alexnet has some odd features. It has relatively few layers. It splits data blocks
across GPU’s. The kernels in the first layer are large, and have a large stride.
And it has response normalization layers. VGGnet is a family of networks built
to investigate these and other issues. Using the best member of the family, the
best practices in cropping, evaluation, data augmentation, and so on, VGGnet
obtained top-1 and top-5 error rates of 23.7% and 6.8% respectively on the ImageNet
ILSVRC-2014 challenge. This was a substantial improvement. Table[I81] describes
the five most important VGGnets (the sixth was used to establish that response
normalization wasn’t helpful for everything; this doesn’t matter to us).

Table [I81] is a more compact presentation of much of the information in
Figure [82 but for the five VGGnets. The table shows the flow of information
downwards. The naming conventions work like this. The term “convX-Y” means a
convolutional layer of Y X x X kernels followed by a ReLU layer. The term “FC-X”
means a fully connected layer that produces an X dimensional vector. For example,
in VGGnet-A, a 224 x 224 x 3 image passes into a layer, labelled “conv3-64". This
consists of a convolutional layer of 64 3 x 3 x 3 kernels, followed by a ReLU layer.
The block then passes into a maxpool layer, pooling over 2 x 2 windows with stride
2. The result goes to a convolutional layer of 128 3 x 3 x 3 kernels, followed by
a ReLU layer. Eventually, the block of data goes to a fully connected layer that
produces a 4096 dimensional vector (“FC-4096”), passes through another of these
to an FC-1000 layer, and then to a softmax layer.

Reading across the table gives the different versions of the network. Notice
that there are significantly more layers with trainable weights than for Alexnet.
The E version (widely known as VGG-19) is the most widely used; others were
mainly used in training, and to establish that more layers gives better performance.
The networks have more layers as the version goes up. Terms in bold identify layers
introduced when the network changes (reading right). So, for example, the B version
has a conv3-64 term that the A version doesn’t have, and the C, D and E versions
keep; the C version has a convl-512 term that the A and B versions don’t have,
and the D and E versions replace with a conv3-512 term.

You should expect that training a network this deep is hard (recall sec-
tion [6.43). VGGnet training followed a more elaborate version of the procedure
I used in section Notice that the B version is the A version together with
two new terms, etc. Training proceeded by training the A version. Once the A
version was trained, the new layers were inserted to make a B version (keeping the
parameter values of the A version’s layers), and the new network was trained from
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Network Architecture
A | B c | D [ B®
Number of layers with learnable weights
11 | 13 16 | 16 | 19
Input (224x224x3 image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
conv3-64 conv3-64 conv3-64 conv3-64
maxpool2x2s2
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
conv3-64 conv3-64 conv3-64 conv3-64
maxpool2x2s2
conv3-128 conv3-128 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128 conv3-128
maxpool2x2s2
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv1l-256 | conv3-256 conv3-256
conv3-256
maxpool2x2s2
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv1l-512 | conv3-512 conv3-512
conv3-512
maxpool2x2s2
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv1l-512 | conv3-512 conv3-512
conv3-512
maxpool2x2s2
FC-4096
FC-4096
FC-1000
softmax

TABLE 18.1: This table summarizes the architecture of five VGGnets. Details in the
text.

that initialization. All parameter values in the new network were updated. The C
version was then trained from B, and so on. All training is by minibatch stochastic
gradient descent with momentum. The first two layers were subject to dropout
(probability of dropout 0.5). Data was aggressively augmented.

Experiment suggests that the features constructed by VGG-19 and networks
like it are canonical in some way. If you have a task that involves computing
something from an image, using VGG-19 features for that task very often works.
Alternatively, you could use VGG-19 as an initialization for training a network for
your task. VGG-19 is still widely used as a feature stack — a network that was
trained for classification, but whose features are being used for something else.
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Remember this: VGGNet outperformed Alexnet at classifying Ima-
geNet images. There are several versions. VGG-19 is still used to produce
image features for other tasks.

18.1.6 Batch Normalization

There is good experimental evidence that large values of inputs to any layer within a
neural network lead to problems. One source of the problem could be this. Imagine
some input to some unit has a large absolute value. If the corresponding weight is
relatively small, then one gradient step could cause the weight to change sign. In
turn, the output of the unit will swing from one side of the ReLLU’s non-linearity
to the other. If this happens for too many units, there will be training problems
because the gradient is then a poor prediction of what will actually happen to the
output. So we should like to ensure that relatively few values at the input of any
layer have large absolute values. We will build a new layer, sometimes called a
batch normalization layer, which can be inserted between two existing layers.

Write x? for the input of this layer, and o® for its output. The output has the
same dimension as the input, and I shall write this dimension d. The layer has two
vectors of parameters, v and 3, each of dimension d. Write diag(v) for the matrix
whose diagonal is v, and with all other entries zero. Assume we know the mean
(m) and standard deviation (s) of each component of x*, where the expectation is
taken over all relevant data. The layer forms

x" = [diag(s +¢)] " (x" —m)
o’ = [diag(y)]x" + .

Notice that the output of the layer is a differentiable function of v and 3. Notice
also that this layer could implement the identity transform, if v = diag(s + €) and
B = m. We adjust the parameters in training to achieve the best performance.
It can be helpful to think about this layer as follows. The layer rescales its input
to have zero mean and unit standard deviation, then allows training to readjust
the mean and standard deviation as required. In essence, we expect that large
values encountered between layers are likely an accident of the difficulty training a
network, rather than required for good performance.

The difficulty here is we don’t know either m or s, because we don’t know the
parameters used for previous layers. Current practice is as follows. First, start with
m = 0 and s = 1 for each layer. Now choose a minibatch, and train the network
using that minibatch. Once you have taken enough gradient steps and are ready
to work on another minibatch, reestimate m as the mean of values of the inputs
to the layer, and s as the corresponding standard deviations. Now obtain another
minibatch, and proceed. Remember, v and § are parameters that are trained, just
like the others (using gradient descent, momentum, adagrad, or whatever). Once
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the network has been trained, one then takes the mean (resp. standard deviation)
of the layer inputs over the training data for m (resp. s). Most neural network
implementation environments will do all the work for you. It is quite usual to place
a batch normalization layer between each layer within the network.

For some problems, minibatches are small, usually because one is using a
large model or a large data item and its hard to cram many items into the GPU.
If you have many GPUs, you can consider synchronizing the minibatches and then
averaging over all the minibatches being presented to the GPU — this isn’t for
everybody. If the minibatch is small, then the estimate of m and s obtained using
a minibatch will be noisy, and batch normalization typically performs poorly. For
many problems involving images, you can reasonably expect that groups of features
should share the same scale. This justifies using group normalization, where the
feature channels are normalized in groups across a minibatch. The advantage of
doing so is that you will have more values to use when estimating the parameters;
the disadvantage is that you need to choose which channels form groups.

There is a general agreement that normalization improves training, but some
disagreement about the details. Experiments comparing two networks, one with
normalization the other without, suggest that the same number of steps tends to
produce a lower error rate when batch normalized. Some authors suggest that
convergence is faster (which isn’t quite the same thing). Others suggest that larger
learning rates can be used.

Remember this: Batch normalization improves training by discour-
aging large numbers in datablocks that aren’t required for accuracy. When
minibatches are small, it can be better to use group normalization, where
one normalizes over groups of features.

18.1.7 Computation Graphs

In section 13 T wrote a simple network in the following form

oP)
where
o) _— O(D)(u(D),g(D))
u?® = O(Dfl)(u(Dfl),g(Dfl))
u® = 0(1)(11(1)791)
uV = x

These equations really were a map for a computation. You feed in x; this gives
u®; which gives u®; and so on, up to o?). The gradient follows from passing
information back down this map. These procedures don’t require that any layer
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FIGURE 18.3: A simple computation graph. You should reassure yourself that a
straightforward adjustment to backpropagation will yield all gradients of interest for
this network.

has only one input or that any layer has only one output. All we need is to connect
the inputs and the outputs in a directed acyclic graph, so that at any node we
know what it means for information to go forward (resp. backward). This graph is
known as a computation graph. Figure shows an example that you should
use to check that you understand how gradients would be computed. A key feature
of good software environments is that they support building complex computation
graphs.

Inception Networks

Up to here, we have seen image classification networks as a sequence of layers,
where each layer has one input and one output, and information passes from layer
to layer in order, and in blocks. This isn’t necessary for backpropagation to work.
It’s enough to have a set of blocks (equivalent to our layers), each with possibly
more than one input and possibly more than one outputs. As long as you know
how to differentiate each output with respect to each input, and as long as outputs
are connected to inputs in a directed acyclic graph, backpropagation works.

This means that we can build structures that are far richer than a sequence
of layers. A natural way to do this is to build layers of modules. Figure [I8.4]
shows two inception modules (of a fairly large vocabulary that you can find in
the literature; there are some pointers at the end of the chapter). The base block
passes its input to each output. A block labelled “AxB” is a convolution layer of
A x B kernels followed by a layer of ReLUs; a stack block stacks each of the data
blocks from its input to form its output.

Modules consist of a set of streams that operate independently on a data
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FIGURE 18.4: On the left an inception module for computing features. On the right,
a module that reduces the size of the grid. The feature module features with: 5 x 5
support (far left stream); 3 x 3 support (left stream); 1 x 1 support after pooling
(right stream); and 1 x 1 support without pooling. These are then stacked into a
block. The grid size reduction module takes a block of features on a grid, and reduces
the size of the grid. The stream on the left constructs a reduced size grid of features
that have quite broad support (5 x 5 in the input stream); the one in the center
constructs a reduced size grid of features that have medium support (3 x 3 in the
input stream); and the one on the right just pools. The outputs of these streams are
then stacked.

block; the resulting blocks are then stacked. Stacking means each stream must
produce a block of the same spatial size, so all the streams must have consistent
stride. Each of the streams has a 1 x 1 convolution in it, which is used for dimension
reduction. This is means that if you stack two modules, each stream in the top
module can select from features which look at the incoming data over different
spatial scales. This selection occurs because the network learns the linear map that
achieves dimension reduction. In the network, some units can specialize in big (or
small, or mixed size) patterns, and later units can choose to make their patterns
out of big (or small, or mixed size) components.

There are many different inception modules, and a rich collection of possi-
ble networks built out of them. Networks built out of these modules are usually
called inception networks. Inception networks tend to be somewhat smaller and
faster than VGG-19. An inception network (with appropriate practices in crop-
ping, evaluation, data augmentation, and so on) obtained top-1 and top-5 error
rates of 21.2% and 5.6% respectively on the ImageNet ILSVRC-2012 classification
challenge dataset. This was a substantial improvement. As you would expect,
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training can be tricky. It’s usual to use RMSprop.

Remember this: Inception networks outperformed VGG-19 on Ima-
geNet. Inception networks are built of modules. Feature modules select from
incoming data using a 1 X 1 convolution, then construct features at different
spatial scales, thenstack them. Other modules reduce the size of the spatial
grid. Training can be tricky.

18.1.9 Residual Networks

A randomly initialized deep network can so severely mangle its inputs that only a
wholly impractical amount of training will cause the latest layers to do anything
useful. As a result, there have been practical limits on the number of layers that
can be stacked. One recent strategy for avoiding this difficulty is to use residual
connections.

Our usual process takes a data block X forms a function of that block
W(X®), then applies a ReLU to the result. To date, the function involves applying
either a fully connected layer or a convolution, then adding bias terms. Writing
F(-) for a ReLU, we have

XD — powa®),

Now assume the linear function does not change the size of the block. We replace
this process with
xHD — powx®) 4+ x®

(where F', W etc. are as before). The usual way to think about this is that a layer
now passes on its input, but adds a residual term to it. The point of all this is
that, at least in principle, this residual layer can represent its output as a small
offset on its input. If it is presented with large inputs, it can produce large outputs
by passing on the input. Its output is also significantly less mangled by stacking
layers, because its output is largely given by its input plus a non-linear function.
These residual connections can be used to bypass multiple blocks. Networks that
use residual connections are often known as ResNets.

There is good evidence that residual connections allow layers to be stacked
very deeply indeed (for example, 1001 layers to get under 5% error on CIFAR-
10; beat that if you can!). One reason is that there are useful components to the
gradient for each layer that do not get mangled by previous layers. You can see
this by considering the Jacobian of such a layer with respect to its inputs. You will
see that this Jacobian will have the form

jo(z);uz = (I—I— Ml)

where 7 is the identity matrix and M; is a set of terms that depend on the map W.
Now remember that, when we construct the gradient at the £’th layer, we evaluate
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FIGURE 18.5: Comparing VGG-19 to a 34 layer ResNet requires an even more com-
pact graphical representation. Each shaded boz is a convolutional layer of 3 x 3 x D
kernels followed by a ReLU. The number of kernels is given the notation below the
box, and D follows by matching sizes. FEvery layer with learnable parameters is
represented by a box, so VGG-19 has 19 such layers, together with pooling layers.
The 34 layer ResNet has 34 such layers. There are a few specialized layers (text in
the box), but most appear in the blocks (inset) which have two 3 X 3 X D layers with
a residual connection that skips both. These blocks are stacked, as indicated in the
figure. The dashed lines around grayed blocks represent a residual connection that
causes the size of the data block to change.

by multiplying a set of Jacobians corresponding to the layers above. This product
in turn must look like

(VO(D) L) JO(D);U(D) X JO(D—I);U(D—l) X ... X Jok;gk

which is

(Vorr L) (T + Mp)(Z+ Mp-1)... (T + Mig1)Txr+1,6
which is

(VO(D)L) (I + Mp + MDfl) e F M+ .)jxk+l;9k.

which means that some components of the gradient at that layer do not get mangled
by being passed through a sequence of poorly estimated Jacobians.
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For some choices of function, the size of the block changes. In this case, we
cannot use the form X+ = FOW(X V) + XD but instead use

XD = P ®) 4 gx®)

where G represents a learned linear projection of X to the right size block.

It is possible to train very deep networks with this structure very success-
fully. Figure compares a 34 layer residual network with a VGG-19 network.
A network with this structure (with appropriate practices in cropping, evaluation,
data augmentation, and so on) obtained top-1 and top-5 error rates of 24.2% and
7.4% respectively on the ImageNet ILSVRC-2012 classification challenge validation
dataset. This is somewhat worse than the inception network performance, but ac-
curacy can be significantly improved by building deeper networks (hard to draw)
and using ensembles, voting over different crops, and so on. A model using 152
layers (ResNet-152) obtained a top-5 error of 3.57% ImageNet ILSVRC-2015 chal-
lenge. ResNet-152 is widely used as a feature stack, and is usually more accurate
than VGGNet.

Remember this: ResNets are the go-to for image classification.
ResNets use a network block that adds a processed version of the input
to the input. This means that helpful gradient values are available even
for very deep networks. ResNet models can be built with extremely deep
networks, and are widely used to make features for tasks other than image
classification.

18.2 OBJECT DETECTION

18.2.1

An object detection program must mark the locations of each object from a known
set of classes in test images. Object detection is hard for many reasons. First,
objects can look different when you look at them from different directions. For
example, a car seen from above can look very different from a car seen from the
side. Second, objects can appear in images at a wide range of scales and locations.
For example, a single image can contain large faces (from people standing close to
the camera) and small faces (from people in the background). Third, many objects
(like people) deform without changing their identity. Fourth, there are often nasty
hierarchical structures to worry about. For example, chairs have legs, backs, bolts,
washers, nuts, cushions, stitches (on the cushions), and so on. Finally, most scenes
contain an awful lot of objects (think about the number of bolts in a picture of a
lecture hall — each chair has many) and most are not worth mentioning.

How Object Detectors Work

Object detectors are built out of image classifiers. Here is the simplest way to build
(say) a face detector. Build an image classifier that can tell whether a face is present
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in an image window of fixed size or not. This classifier produces a high score for
faces, and a low score for non-faces. Take this face classifier, and search through a
set of windows selected from the image. Use the resulting scores to decide which
windows contain faces. This very simple model exposes the big questions to be
addressed. We must:

e Decide on a window shape: this is easy. There are two possibilities: a
box, or something else. Boxes are easy to represent, and are used for almost
all practical detectors. The alternative — some form of mask that cuts the
object out of the image — is hardly ever used, because it is hard to represent.

e Build a classifier for windows: this is easy — we’ve seen multiple construc-
tions for image classifiers.

e Decide which windows to look at: this turns out to be an interesting
problem. Searching all windows isn’t efficient.

e Choose which windows with high classifier scores to report: this is
interesting, too, because windows will overlap, and we don’t want to report
the same object multiple times in slightly different windows.

e Report the precise locations of all faces using these windows: this is
also interesting. It turns out our window is likely not the best available, and
we can improve it after deciding it contains a face.

Which window to look at is hard, and most innovation has occurred here.
Each window is a hypothesis about the configuration (position and size) of the
object. The very simplest procedure for choosing windows is to use all windows on
some grid (if you want to find larger faces, use the same grid on a smaller version of
the image). No modern detector looks at a grid because it is inefficient. A detector
that looks at closely spaced windows may be able to localize (estimate position
and size of) the object more accurately. But more windows means the classifier’s
false positive rate must be extremely small to produce a useful detector. Tiling the
image tends to produce far too many windows, many of which are fairly obviously
bad (for example, a box might cut an object in half).

Deciding which windows to report presents minor but important problems.
Assume you look at 32 x 32 windows with a stride of 1. Then there will be many
windows that overlap the object fairly tightly, and these should have quite similar
scores. Just thresholding the value of the score will mean that we report many
instances of the same object in about the same place, which is unhelpful. If the
stride is large, no window may properly overlap the object and it might be missed.
Instead, most methods adopt variants of a greedy algorithm usually called non-
maximum suppression. First, build a sorted list of all windows whose score is
over threshold. Now repeat until the list is empty: choose the window with highest
score, and accept it as containing an object; now remove all windows with large
enough overlap on the object window.

Deciding precisely where the object is also presents minor but important prob-
lems. Assume we have a window that has a high score, and has passed through
non-maximum suppression. The procedure that generated the window does not
do a detailed assessment of all pixels in the window (otherwise we wouldn’t have
needed the classifier), so this window likely does not represent the best localization
of the object. A better estimate can be obtained by predicting a new bounding
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box using a feature representation for the pixels in the current box. It’s natural to
use the feature representation computed by the classifier for this bounding box
regression step.

Remember this: Object detectors work by passing image bozxes that
are likely to contain objects into a classifier. The classifier gives scores for
each possible object in the box. Multiple detections of the same object by
overlapping boxes can be dealt with by non-mazrimum suppression, where
higher-scoring bozes eliminate lower-scoring but overlapping boxes. Bozes
are then adjusted with a bounding box regression step.

18.2.2 Selective Search

The simplest procedure for building boxes is to slide a window over the image.
This is simple, but works rather badly. It produces a large number of boxes, and
the boxes themselves ignore important image evidence. Objects tend to have quite
clear boundaries in images. For example, if you are looking at a picture of a horse
in a field, there’s usually no uncertainty about where the horse ends and where
the field begins. At these boundaries, a variety of image properties change quite
sharply. At the boundary of the horse, color changes (say, brown to green); texture
changes (say, smooth skin to rough grass); intensity changes (say, dark brown horse
to brighter green grass); and so on.

Making boxes by sliding windows ignores this information. Boxes that span a
boundary probably contain only part of an object. Boxes that have no boundaries
nearby likely don’t contain anything interesting. It is still quite difficult to actually
find the boundaries of objects, because not every boundary has a color change
(think of a brown horse in a brown field), and some color changes occur away from
boundaries (think about the stripes on a zebra). Nonetheless, it has been known for
some time that one can use boundaries to score boxes for their “objectness”. The
best detectors are built by looking only at boxes that have a high enough objectness
score.

The standard mechanism for computing such boxes is known as selective
search. A quick description is straightforward, but the details matter (and you’ll
need to look them up). First, one breaks up the image into regions — groups
of pixels that have coherent appearance — using an agglomerative clusterer. The
agglomerative clusterer is quite important, because the representation it produces
allows big regions to be made of smaller regions (so, for example, a horse might
be made of a head, body and legs). Second, one scores the regions produced by
the clusterer for “objectness”. This score is computed from computing a variety of
region features, encoding color, texture and so on. Finally, the regions are ranked
by the score. It isn’t safe to assume that regions with a score over some threshold
are objects and the others aren’t, but the process is very good at reducing the
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number of boxes to look at. One does not need to go very deep into the ranked list
of regions to find all objects of interest in a picture (2000 is a standard).

Remember this: Image bozes that are likely to contain objects are
closely related to regions. Selective search finds these boxes by building
a region hierarchy, then scoring regions for objectness; regions with good
objectness score produce bounding boxes. This gives an effective way of
finding the boxes that are likely to contain objects.

18.2.3 R-CNN, Fast R-CNN and Faster R-CNN

There is a natural way to build a detector using selective search and an image
classifier. Use selective search to build a ranked list of regions. For each region
in the ranked list, build a bounding box. Now warp this box to a standard size,
and pass the resulting image to an image classifier. Rank the resulting boxes
by the predicted score for the best object, and keep boxes whose score is over a
threshold. Now apply non-maximum suppression and bounding box regression to
that list. Figure[I34]shows this architecture, known as R-CNN; it produces a very
successful detector, but a speedup is available.

The problem with R-CNN is that one must pass each box independently
through an image classifier. There tends to be a high degree of overlap between
the boxes. This means the image classifier has to compute the neural network
features at a given pixel for every box that overlaps the pixel, so doing unnecessary
redundant work. The cure produces a detector known as Fast R-CINN. Pass the
whole image through a convolutional neural network classifier (but ignore the fully
connected layers). Now take the boxes that come from selective search, and use
them to identify regions of interest (ROI’s) in the feature maps. Compute class
probabilities from these regions of interest using image classification machinery.

The ROI’s will have different sizes, depending on the scale of the object.
These need to be reduced to a standard size, otherwise we cannot pass them into
the usual machinery. The trick is a ROI pooling layer, which produces a standard
size summary of each ROI that is effective for classification. Decide on a standard
size to which the ROI’s will be reduced (say 7, x r,). Make a stack of grids this
size, one per ROI. For each ROI, break the ROI into an r, x r, grid of evenly sized
blocks. Now compute the maximum value in each block, and place that value in
the corresponding location in the grid representing the ROI. This stack of grids can
then be passed to a classifier.

The culmination of this line of reasoning (so far!) is Faster R-CNN. It turns
out that selective search slows down Fast R-CNN. At least part of this slow down
is computing features, etc. for selective search. But selective search is a process
that predicts boxes from image data. There is no particular reason to use special
features for this purpose, and it is natural to try and use the same set of features to
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FIGURE 18.6: A schematic picture of how R-CNN works. A picture of Inkosi Albert
Luthuli is fed in to selective search, which proposes possible boxes; these are cut
out of the image, and reshaped to fized size; the boxes are classified (scores next
to each box); non-maximum suppression finds high scoring boxes and suppresses
nearby high scoring boxzes (so his face isn’t found twice); and finally bounding box
regression adjusts the corners of the box to get the best fit using the features inside
the bozx.

predict boxes and to classify them. Faster R-CNN uses image features to identify
important boxes.

Convolutional neural networks aren’t particularly good at making lists, but
are very good at making spatial maps. The trick is to encode a large collection
of image boxes in a representation of fixed size that can be thought of as a map.
The set of boxes can be represented like this. Construct a 3D block where each
spatial location in the block represents a point on a grid in the image (a stride of 16
between the gridpoints in the original). The third coordinate in the block represents
an anchor box. These are boxes of different size and aspect ratio, centered at the
grid location (Figure I8& 9 in the original). You might be concerned that looking
at a relatively small number of sizes, locations and aspect ratios creates problems;
but bounding box regression is capable of dealing with any issues that arise. We
want the entries in this map to be large when a box is likely to contain an object
(you can think of this as an “objectness” score) and small otherwise. Thresholding
the boxes and using non-maximum suppression yields a list of possible boxes, which
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FIGURE 18.7: Fast R-CNN is much more efficient than R-CNN, because it computes
a single feature map from the image, then uses the bozes proposed by selective search
to cut regions of interest (ROI’s) from it. These are mapped to a standard size by
a ROI pooling layer, then presented to a classifier. The rest should be familiar.

can be handled as above.

A significant attraction of this approach is that the process that makes boxes
can be trained at the same time as the classifier — box proposals can take classifier
eccentricities in mind, and vice versa. At training time, one needs two losses. One
loss measures the effectiveness of the box proposal process and the other measures
the accuracy of the detector. The main difference is that the box proposal process
needs to give a high score to any box with a good IoU against any ground truth
bounding box (whatever the object in the box). The detector needs to name the
object in the box.

Remember this: R-CNN, Fast R-CNN and Faster R-CNN are strongly
performing object detection systems that differ by how bozes are proposed.
R-CNN and Fast R-CNN use selective search; Faster R-CNN scores anchor
boxes. As of writing, Faster R-CNN is the reference object detector.

YOLO

All the detectors we have seen so far come up with a list of boxes that are likely
to be useful. YOLO (You Only Look Once) is a family of detectors (variants pay
off accuracy against speed) that uses an entirely different approach to boxes. The
image is divided into an S x S grid of tiles. Each tile is responsible for predicting
the box of any object whose center lies inside the tile. Each tile is required to
report B boxes, where each box is represented by the location of its center in the
tile together with its width and its height. For each of these boxes (write b), each
tile must also report a box confidence score ¢(b(tile)). The method is trained to
produce a confidence score of zero if no object has its center in the tile, and the
IoU for the box with ground truth if there is such an object (of course, at run time
it might not report this score correctly).
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FIGURE 18.8: Faster RCNN uses two networks. One uses the image to compute
“objectness” scores for a sampling of possible image boxes. The samples (called
“anchor boxes”) are each centered at a grid point. At each grid point, there are nine
bozxes (three scales, three aspect ratios). The second is a feature stack that computes
a representation of the image suitable for classification. The boxes with highest
objectness score are then cut from the feature map, standardized with ROI pooling,
then passed to a classifier. Bounding box regression means that the relatively coarse
sampling of locations, scales and aspect ratios does not weaken accuracy.

Each tile also reports a class-posterior, p(class|tile) for that tile. The score
linking each of the boxes b in a tile to a class is then computed as

c(b(tile)) x p(class|tile).

Notice how the box scoring process has been decoupled from the object class pro-
cess. Each tile is scoring what object overlaps the tile and also scoring which boxes
linked to the tile are important. But these scores are computed separately — the
method does not know which box is being used when it computes the object scores.
This means the method can be extremely fast, and YOLO offers relatively easy
tradeoffs between speed and accuracy, which are often helpful (for example, one
can use more or fewer network layers to make features; more or fewer boxes per
tile; and so on).

Decoupling boxes from classes comes with problems. YOLO tends to handle
small objects poorly. There is a limited number of boxes, and so the method
has difficulties with large numbers of small objects. The decision as to whether an
object is present or not is based on the whole tile, so if the object is small compared
to the tile, the decision might be quite inaccurate. YOLO tends not to do well with
new aspects or new configurations of familiar objects. This is caused by the box
prediction process. If the method is trained on (say) all vertical views of trees (tall
thin boxes), it can have trouble with a tree lying on its side (short wide box).
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Remember this: The YOLO family of detectors work very differently
from the R-CNN family. In Yolo, image tiles produce objectness scores for
bozes and a classification score for objects independently; these are then
multiplied. The advantage is speed, and tunable payoffs between speed and
accuracy. The disadvantages are that many small objects are hard to detect,
and new configurations of familiar objects are often missed.

18.2.5 Evaluating Detectors

Evaluating object detectors takes care. An object detector takes an image, and,
for each object class it knows about, produces a list of boxes each of which has a
score. Evaluating the detector involves comparing these boxes with ground truth
boxes that have been marked on the image by people. The evaluation should favor
detectors that get the right number of the right object in the right place. It should
discourage detectors that just propose an awful lot of boxes. Getting this right
takes a fair amount of careful work, which won’t appeal to (or be useful to) all.
The rest of the section is skippable if you're not that interested in object detection.

To start, assume the detector responds to only one kind of object. You now
have two lists: one (G) is the list of ground truth boxes, the other (D) is the list
of boxes the detector produces, which has already been subject to non-maximum
suppression, bounding box regression, and anything else the team that created the
detector can think of. You should think of the detector as a search process. The
detector has searched a huge collection of boxes, and produced some boxes that it
asserts are relevant, in order of relevance (this is the list D). This list needs to be
scored. The evaluation must mark boxes in D with relevant if they match ground
truth boxes and irrelevant otherwise, and then summarize the lists.

The boxes that the detector predicts are unlikely to match ground truth ex-
actly, and we need some way of telling whether the boxes are good enough. The
standard method for doing this is to test the IoU (Intersection over Union). Write
B, for the ground truth box and B,, for the predicted box. The IoU is

_ Area(B,N By)

1oU(By, By) = Area(B, U B,)’

Choose some threshold ¢. If IoU(B,, By) > t, then B, could match the ground
truth box B,.

The detector should be credited for producing a box that has a high score and
matches a ground truth box. But the detetector should not be able to improve its
score by predicting many boxes on top of a ground truth box. The standard way
to handle the problem is to mark the overlapping box with highest score relevant.
The procedure is:

e Choose a threshold t.
e Order D by the score of each box, and mark every element of D with irrelevant.
Choose a threshold t¢.
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FIGURE 18.9: Two plots for an imaginary search process.
against recall shows a characteristic sawtooth shape. Interpolated precision mea-

sures the best precision you can get by increasing the recall, and so smoothes the
plot. Interpolated precision is also a more natural representation of what one wants
from search results — most people would be willing to add items to get higher preci-

sion. Interpolated precision is used to evaluate detectors.

e For each element of D in order of score, compare that box against all ground
truth boxes. If any ground truth box has IoU > ¢, mark the detector box
relevant and remove that ground truth box from G. Proceed until there are

no more ground truth boxes.

Now every box in D is tagged either relevant or irrelevant.
There are standard evaluations for search results like those produced by our

detector. The first step is to merge the lists for each evaluation image into a single
list of results. The precision of a set of search results S is given by
number of relevant search results
P(S) = .
total number of search results

The recall is given by
number of relevant search results

(8) = total number of relevant items in collection’

As you move down the list D in order of score, you get a new set of search results.

The recall never decreases as the set gets larger, and so you could plot the precision
These plots have a characteristic saw-tooth

as a function of recall (write P(R)).
structure (Figure I83). If you add a single irrelevant item to the set of results,

the precision will fall; if you then add a relevant item, it jumps up. The sawtooth
doesn’t really reflect how useful the set of results is — people are usually willing to
add several items to a set of search results to improve the precision — and so it is
better to use interpolated precision. The interpolated precision at some recall

value Ry is given by
“ max
P(RO) = R > Ry P(R)
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(Figure [89]). By convention, the average precision is computed as
1 i
2P

This value summarizes the recall-precision curve. Notice this averages in interpo-
lated precision at high recall. Doing so means a detector cannot get a high score
by producing only very few, very accurate boxes — to do well, a detector should
have high precision even when it is forced to predict every box.

Average precision evaluates detection for one category of object. The mean
average precision (mAP) is the mean of the average precision for each category.
The value depends on the IoU threshold chosen. One convention is to report mAP
at ToU = 0.5. Another is to compute mAP at a set of 10 ToU values (0.45 44 x 0.05
for i € 1...10), then average the mAP’s. These evaluations produce numbers that
tend to be bigger for better detectors, but it takes some practice to have a clear
sense of what an improvement in mAP actually means.

Remember this: FEvaluating object detectors should favor detectors
that get the right number of the right objects in the right places, and should
discourage detectors that just produce a lot of bozes. Evaluation scores boxes
produced by the detector for relevance (is this the right box in the right
place?) wusing IoU scores to evaluate how well bozes overlap with ground
truth. The average precision is computed from an interpolated precision
curve for each type of object. This is then averaged over object types to
yield mAP.

18.3 FURTHER READING

To proceed further, you really should be reading original papers, which is how this
subject is communicated. Here’s a reading list to get started with.

e Origins of CNN’s: Gradient-based learning applied to document recognition,
by Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick Haffner, Proceed-
ings of the IEEE 86 (11), 2278-2324

e Batch normalization: Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, by Sergey loffe, Christian
Szegedy, Proc Int. Conf. Machine Learning, 2015. You can find a version at
https://arxiv.org/abs/1502.03167.

e ImageNet: ImageNet Large Scale Visual Recognition Challenge, by Olga
Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg and Li Fei-Fei in International Journal of Computer Vision
December 2015, Volume 115, Issue 3, pp 211-252.
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Pascal: The Pascal Visual Object Classes (VOC) Challenge, by Mark Ever-
ingham, Luc Van Gool, Christopher K. I. Williams, John Winn and Andrew
Zisserman, International Journal of Computer Vision, June 2010, Volume 88,
Issue 2, pp 303-338

VGGNet: Very Deep Convolutional Networks for Large-Scale Image Recog-
nition by Karen Simonyan and Andrew Zisserman, Proc. Int. Conf. Learned
Representations, 2015. You can find a version of this at https://arxiv.org/pdf/
1409.1556.pdf.

Inception: Going Deeper with Convolutions, by Christian Szegedy, Wei Liu,
Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke and Andrew Rabinovich, Proc Computer Vision
and Pattern Recognition, 2015. You can find a version of this at https://arxiv.
org/abs/1409.4842.

ResNets: Deep Residual Learning for Image Recognition by Kaiming He,
Xiangyu Zhang, Shaoqing Ren and Jian Sun, Proc Computer Vision and
Pattern Recognition, 2015. You can find a version of this at https://arxiv.org/
abs/1512.03385.

Selective search: Selective Search for Object Recognition by J. R. R. Ui-
jlings, K. E. A. van de Sande, T. Gevers and A. W. M. Smeulders Interna-
tional Journal of Computer Vision September 2013, Volume 104, Issue 2, pp
154-171.

R-CNN: Rich feature hierarchies for accurate object detection and semantic
segmentation, by R. Girshick, J. Donahue, T. Darrell and J. Malik, IEEE
Conf. on Computer Vision and Pattern Recognition, 2014. You can find a
version of this at https://arxiv.org/abs/1311.2524.

Fast R-CNN: Fast R-CNN, by Ross Girshick, IEEE Int. Conf. on Computer
Vision (ICCV), 2015, pp. 1440-1448. You can find a version of this at https://
www.cv-foundation.org/openaccess/content_iccv_2015/html/Girshick_Fast_R-CNN_
ICCV_2015_paper.html.

Faster R-CNN: Fuaster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks, by Shaoqing Ren, Kaiming He, Ross Girshick
and Jian Sun, Advances in Neural Information Processing Systems 28 (NIPS
2015). You can find a version of this at http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-obj
pdf.

YOLO: You Only Look Once: Unified, Real-Time Object Detection, by Joseph
Redmon, Santosh Divvala, Ross Girshick and Ali Farhadi, Proc Computer Vi-
sion and Pattern Recognition, 2016. You can find a version of this at https://
www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_
Look_CVPR_2016_paper.pdf. There’s a home page at https://pjreddie.com/
darknet/yolo/.
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18.4 YOU SHOULD

18.4.1 remember these terms:

Pascal . . . o . o o 439
WordNedl . . . . o o oo 440
@ ................................. 440
.................................... 440

SUN . . . 440
Placesd . . . . o o 441
ata augmentation . . .« v v v v e 441
Alexnetl . . o o o 442
VGG . . o 444
feature stackl . . . . ... 445
batch normalization layed . . .« oo 446
roup normalization . . . . s e e 447
ﬁomnllfaﬁon orapH . . .. . 448

% ............................ 448
i lond . . ... 450

18.4.2 remember these facts:
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[VGGNet was a spectacular success at imagﬂiaﬁsj_ﬁgammd ...... 446

[Batch or group normalization can help trainind ............ 447
nception networks handle fea es at multiple ial scaled . . . . . 450
and vaccuratd . . . . . . ... .. ... 452

ow object detectors workl . . . . . .. .. ... ... 454
[Selective search finds boxes likely to contain objectd . . . . . . . . . 455
[How R-CNN, Fast R-CNN and Faster R-CNN work . . .. ... .. 457

................. 459
i i is fiddlsl . . .. ... 461
18.4.3 be able to:

e Run an image classifier in your chosen environment.
e Explain how current object detectors work.
e Run an object detector in your chosen environment.



PROBLEMS
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18.1. Modify the backpropagation algorithm to deal with directed acyclic graphs
like that of [8:3] Note the layers are numbered there, and I will denote the
parameters of the i’th layer as 6;.

(a)

(b)

(c)
(d)

The first step is to deal with layers that have one output, but two inputs.
If we can deal with two inputs, we can deal with any number. Write the

inputs of layer 6 as xgﬁ) and xgﬁ). Write Jo(ﬁ)‘

the output with respect to the ’th input. Explainlhow to compute Vg, L
using this Jacobian.

(©® for the Jacobian of

Layer 2 has two outputs. Write the outputs ng) and 0&2). Write Jo(z) s

for the Jacobian of the i’th output with respect to its input. Explain how
to compute Vy, £ using this Jacobian (and others!).

Can you backpropagate through a layer has two inputs and two outputs?
What goes wrong with backpropagation when the computation graph has
a cycle?

PROGRAMMING EXERCISES

General remark: These ezercises are suggested activities, and are rather open
ended. It will be difficult to do them without a GPU. You may have to deal with some fun
installing software environments, etc. It’s worthwhile being able to do this, though.

Minor nuisance: At least in my instance of the ILSVRC-2012 validation dataset,
some images are grey level images rather than RGB. Ensure the code you use turns them
into RGB images by making the R, G and B channel the same as the original intensity
channel, or funny things can happen.

18.2. Download a pretrained VGGNet-19 image classifier for your chosen program-
ming framework.

(a)

(b)

Run this classifier on ILSVRC-2012 validation dataset. Each image needs
to be reduced to 224 x 224 block. Do this by first resizing the image uni-
formly so that the smallest dimension is 224, then cropping the right half
of the image. Ensure that you do whatever pre-processing your instance
of VGGNet-19 requires on this crop (this should be subtracting the mean
RGB at each pixel from each pixel; i.e. follow the procedure on page d31]
but don’t divide by the standard deviation). In this case, what is the
top-1 error rate? What is the top-5 error rate?

Now investigate the effect of multiple crops. For each image in the valida-
tion dataset, crop to 224 x 224 for five different crop windows. One of these
is centered in the image; the other four are obtained by place a corner of
the crop window at each corner of the image respectively. Ensure that
you do whatever pre-processing your instance of VGGNet-19 requires on
each crop (this should be subtracting the mean RGB at each pixel from
each pixel; i.e. follow the procedure on page [431] but don’t divide by the
standard deviation). Pass each crop through the network, then average
the predicted class posteriors and use that score. In this case, what is the
top-1 error rate? What is the top-5 error rate?

18.3. Download a pretrained ResNet image classifier for your chosen programming
framework.

(a)

Run this classifier on ILSVRC-2012 validation dataset. Each image needs
to be reduced to 224 x 224 block. Do this by first resizing the image uni-
formly so that the smallest dimension is 224, then cropping the right half



18.4.

18.5.

(b)
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of the image. Ensure that you do whatever pre-processing your instance
of ResNet requires on this crop (this should be subtracting the mean RGB
at each pixel from each pixel; i.e. follow the procedure on page [431] but
don’t divide by the standard deviation). In this case, what is the top-1
error rate? What is the top-5 error rate?

Now investigate the effect of multiple crops. For each image in the vali-
dation dataset, crop to 224 x 224 for five different crop windows. One of
these is centered in the image; the other four are obtained by place a cor-
ner of the crop window at each corner of the image respectively. Ensure
that you do whatever pre-processing your instance of ResNet requires on
each crop (this should be subtracting the mean RGB at each pixel from
each pixel; i.e. follow the procedure on page [431] but don’t divide by the
standard deviation). Pass each crop through the network, then average
the predicted class posteriors and use that score. In this case, what is the
top-1 error rate? What is the top-5 error rate?

Download both a pretrained ResNet image classifier and a pretrained VGG-19
for your chosen programming framework. For each image in the validation
dataset, use a center crop to 224 x 224 Ensure that you do whatever pre-
processing your instances require. Record for every image the true class, the
class predicted by ResNet, and the class predicted by VGG-19.

(a)

(b)

(c)
(d)
(e)

On average, if you know VGG-19 predicted the label correctly or not, how
accurately can you predict whether ResNet gets the label right? Answer
this by computing P(ResNet right| VGG right) and P(ResNet right[VGG wrong)
using your data.

Both networks are quite accurate, even for top-1 error. This means that
their errors must be correlated, because each gets most examples right.
We would like to know whether the result of the previous subexercise is
due to this effect, or something else. Write the VGG-19 error rate as v,
and the ResNet error rate as r. Write v for a 50, 000 dimensional binary
vector, with v 1’s, where the entries are IID samples from a Bernoulli
distribution with mean v. This is a model of randomly distributed errors
with the same error rate as VGG-19. A similar r models random errors
for ResNet. Draw 1000 samples of (v,r) pairs, and compute the mean
and standard error of P(r; = Olv; = 1) and P(r; = 1|v; = 0). Use
this information to determine whether ResNet “knows” something about
VGG-19 errors.

What could cause the effect you see?

How are errors distributed across categories?

Hard! (but interesting). Obtain instances of several different ImageNet
classification networks. Investigate the pattern of errors. In particular,
for images that one instance mislabels, do other instances mislabel it as
well? If so, how many different labels are used in total? I have found
suprisingly strong agreement between instances that mislabel an image
(i.e. if network A thinks an image of a dog is a cat, and network B gets
the same image wrong as well, then network B will likely think it’s a cat,
t00).

Choose 10 ImageNet classes. For each class, download 50 example images
of items that belong to those classes from an internet image source (images.
google.com or images.bing.com are good places to start; query using the name
of the category).

(a)

Classify these images into the ImageNet classes using a pretrained net-


images.google.com
images.google.com
images.bing.com
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work. What is the top-1 error rate? What is the top-5 error rate?
(b) Compare the results of this experiment with the accuracy on the validation
set for these classes. What is going on?



