CHAPTER 8

Edges and Interest Points

Sharp changes in image intensity are evidence that something interesting is hap-
pening. Such changes could be caused by a change in the color of the surface; a
shadow; a sharp change in the orientation of the surface (which changes how much
light it collects, Section 27.2.1); or an occluding contour (an image curve which sep-
arates object pixels from background pixels). These sharp changes occur at edges,
curves where the brightness changes particularly sharply (Section 8.1.1). Tradi-
tionally, edges were used for inference based methods — a program would observe
some interesting structure in the edges, then draw conclusions about the scene from
them. Edges aren’t much used for inference anymore, but are still useful for other
purposes because they represent a form of summary of an image — a representation
in terms of edges is small, but contains a lot of information about the image.

A really useful summary describes an image in terms of interest points. For
the moment, these are points in the image that are easy to find and that support
distinctive descriptions (as an example, the corners of texture patterns). They are
important because they offer an extremely small representation of the image that
is very useful in practice. Interest points can be used to register images — one
matches the interest points, then computes a transformation using the matches
(Section 15.10). They can be used to infer movement from a sequence of images —
one matches interest points, then solves a geometric problem (Section 15.10).

8.1 EDGES AND ORIENTATIONS

Edges are curves of edge points, where the brightness changes particularly sharply.
At edges, the gradient has a large magnitude, and the gradient magnitude is larger
than at nearby points. Constructing edge points and edges out of them is relatively
straightforward (Section 15.10). But edge points are identified by checking gradi-
ent magnitude against a threshold. This means that scaling the intensity of the
image (perhaps by changing the brightness of the illumination or by changing the
camera aperture) will change the edges. An alternative image representation that
is unaffected by intensity scaling is the orientation of the image gradient. This is
useful in a range of applications.

There is mostly no advantage in looking for edges in RGB images, It is mostly
enough to find edges in intensity images, because (somewhat surprisingly) there are
very few isoluminant color edges — that is, color changes where the intensity does
not change. As Figure 8.1 shows, when there is a gradient in any color component,
there is almost always a gradient in the same place in the intensity image.

8.1.1 Gradient-Based Edge Detectors

Edges occur where the image intensity changes particularly sharply, so the first step
to find edges is to compute an estimate of the gradient magnitude using a derivative

102

Section 8.1 Edges and Orientations 103

Red Green Blue Intensity
: . 4 L

FIGURE 8.1: Edges almost always involve a change in image intensity, and so image
color can be ignored. Top row shows red, green and blue separations of an im-
age, together with the image intensity. Notice that the intensity of the separations
changes (for example, the sky is blue, so it is brighter in the blue separation and
darker in the red separation), but neighboring regions that are different in one color
separation are different in intensity, too. Center row shows gradient magnitude,
computed with derivative of gaussian filters (0 =1). These have been scaled with a
single scale so that the largest magnitude is light (same scale applied to each separa-
tion and to intensity). While the magnitudes differ from separation to separation,
if there is a gradient of any magnitude in one separation, it appears in the intensity
image as well. Bottom row shows log of scaled gradient magnitude, with a scale
chosen to show gradients with small magnitude. Again, anything that appears in
one separation appears in the intensity image as well. This is just a fact about
color images, but it is a useful fact: edges can safely be considered an intensity
phenomenon. Image credit: Figure shows my photograph of Table Mountain.

of gaussian filter (Section 5.2.2). The gradient magnitude forms thick trails in the
image (Figure 8.2) and edges are curves. These curves are built out of grid points,
where the grid for the curves might be finer than the image grid (because gradient
magnitude values can be interpolated). Each edge point should should be a local
maximum of the gradient in the direction normal to the curve (otherwise one could
move the edge point to a location where the change in intensity is larger). This
is easily checked for any given point (Figure 8.3). Because edge points join up to
form curves, it should be easy to find the next point by searching along the tangent
to the curve. The tangent should be normal to the gradient, so the next point on
the edge is easy to find (Figure 8.3). Check the available candidates, and if one is

104 Chapter 8 Edges and Interest Points

FIGURE 8.2: The gradient magnitude can be estimated by smoothing an image and
then differentiating it. This is equivalent to convolving with the derivative of a
smoothing kernel. The extent of the smoothing affects the gradient magnitude; in
this figure, we show the gradient magnitude for the figure of a zebra at different
scales. At the center, gradient magnitude estimated using the derivatives of a
Gaussian with 0 = 1 pizel; and on the right, gradient magnitude estimated using
the derivatives of a Gaussian with o = 2 pizel. Notice that large values of the
gradient magnitude form thick trails.

an edge point add it to the chain of points. Once you run out of points on a given
chain (the search for the next edge point fails), just look for another edge point.
Forming chains of points using this process is called nonmazimum suppression.

There are too many chains to come close to being a reasonable representation
of object boundaries. In part, this is because the marking procedure does not look at
how large the maxima are. It is more usual to apply a threshold test to ensure that
the maxima are greater than some lower bound. This in turn leads to broken edge
curves. The usual trick for dealing with this is to use hysteresis; use two thresholds
and refer to the larger when starting an edge chain and the smaller while following
it. The trick often results in an improvement in edge outputs. These considerations
yield the procedure in the box below. Most current edgefinders follow these lines.

Section 8.1 Edges and Orientations 105

Checking a point Finding the next point
O O 0O 0O 0O O O 0O 0O 0O
®@ O o OI(F))‘ (@) ® O @€ O @ O
o ool o o o o oo oto
® O ‘£ ® O ® O @ O @sO0
o O OrO O O O O 0O 0 0O

FIGURE 8.3: The figure on the left shows how to tell whether a location is an edge
point. In this figure, the edge point grid is finer than the image grid by a factor
of two. The filled circles are points on the image grid (which are also on the edge
point grid), and the open circles are on the edge point grid. Currently, q is under
consideration as an edge point. To determine whether the gradient is at a mazimum
the value of the magnitude must be interpolated at both p and r, neither of which
are grid points. If the value at q is larger than both, q is an edge point. The figure
on the right shows that, once one has an edge point, the next point in the chain can
be found relatively easily. The tangent to the curve of edge points is perpendicular
to the gradient, so if q is an edge point, s and t are candidates for the next edge
point. Gradient magnitudes that aren’t known are reconstructed by interpolation.

Procedure: 8.1 Gradient-Based Edge Detection.
Form an estimate of the image gradient

Compute the gradient magnitude
While there are points with high gradient
magnitude that have not been visited
Find a start point that is a local maximum in the
direction perpendicular to the gradient
erasing points that have been checked
While possible, expand a chain through
the current point by:
1) predicting a set of next points, using
the direction perpendicular to the gradient
2) finding which (if any) is a local maximum
in the gradient direction
3) testing if the gradient magnitude at the
maximum is sufficiently large
4) leaving a record that the point and
neighbors have been visited
record the next point, which becomes the current point
end
end

106 Chapter 8 Edges and Interest Points

FIGURE 8.4: Edge points marked on the pizel grid for the image shown on the top.
The edge points on the left are obtained using a Gaussian smoothing filter at o one
pizel, and gradient magnitude has been tested against a high threshold to determine
whether a point is an edge point. The edge points at the center are obtained us-
ing a Gaussian smoothing filter at o four pizels, and gradient magnitude has been
tested against a high threshold to determine whether a point is an edge point. The
edge points on the right are obtained using a Gaussian smoothing filter at o four
pizxels, and gradient magnitude has been tested against a low threshold to determine
whether a point is an edge point. At a fine scale, fine detail at high contrast gener-
ates edge points, which disappear at the coarser scale. When the threshold is high,
curves of edge points are often broken because the gradient magnitude dips below the
threshold; for the low threshold, a variety of new edge points of dubious significance
are introduced.

8.1.2 Orientations

As the light gets brighter or darker (or as the camera aperture opens or closes), the
image will get brighter or darker, which we can represent as a scaling of the image
value. The image Z will be replaced with sZ for some value s. The magnitude
of the gradient scales with the image, i.e., | VZ| will be replaced with s| VZ|. This
creates problems for edge detectors, because edge points may appear and disappear
as the image gradient values go above and below thresholds with the scaling. One
solution is to represent the orientation of image gradient, which is unaffected by
scaling (Figure 8.5). The gradient orientation field depends on the smoothing scale

8.2

Section 8.2 Interest Points 107

FIGURE 8.5: Orientations are important because (a) the orientation of the gradient
does not change when the image intensity changes and (b) different patterns tend
to have different orientations. On the left, two versions of the same image, at
different intensity, with every 10th orientation arrow plotted (otherwise the arrows
overlap and the image is hard to read). The directions of the gradient arrows are
fized, whereas the size changes. On the right, two quite different simple images
with rose plots showing orientation patterns. In a rose plot, the size of a wedge
represents the relative frequency of that range of orientations. The rose plots are
different for these different patterns. Philip Gatward (¢) Dorling Kindersley, used
with permission.

at which the gradient was computed. Orientation fields can be quite characteristic
of particular textures (Figure ?7?), and we will use this important property to come
up with more complex features below.

Remember this: Edges are image locations where intensity changes
strongly. An edge could be evidence of: an object boundary; a change in
surface orientation; a change in surface albedo; or a shadow. Edge points
are typically points where the gradient magnitude is a local mazximum and
also large. They can be found by estimating the gradient using derivative of
gaussian filters. Edge points can be linked into edge curves. These curves
are improved by hysteresis in the threshold.

INTEREST POINTS

One strategy for registering an image to another is to find corresponding pairs
of points and register those. Correspondence is important — registration requires

108 Chapter 8 Edges and Interest Points

A B
Rotate
> G-

Scale

FIGURE 8.6: Interest points are neighborhoods in the image that can be described in
a way that is unaffected by translation, rotation and scale. The top row shows
two images of the same polygon lying on a leaf texture; the camera was rotated and
translated between pictures, and has zoomed in on the second image. The corner
of the polygon is a promising location to describe, because it can be localized. But
to obtain a description that can be compared from image to image requires cutting
out a meighborhood whose size changes appropriately when the image is zoomed
in or out (the dark circle on the two images), and knowing how to rotate those
neighborhoods into a comparable configuration (in this case, the filled gray circle
indicates the zero angle). Such neighborhoods can be compared by, for example,
translating, rotating and scaling them to a comparable configuration (A and B)
and then comparing a feature description of the contents of the neighborhood.

knowing which point in image 1 will go to which point in image 2. Appropriate
points, together with their neighborhoods, are usually called interest points. One
way to establish correspondence is to build a neighborhood around a point, describe
the contents of the neighborhood in a distinctive way, then match these descriptions.
For this to work, the neighborhood should behave appropriately when image 2 is a
translated, rotated and scaled version of image 1. Interest points have the following
important properties:

Localization: It must be possible to localize the point (ie tell where the point
is) by looking at an image window around the point. For example, a corner can be
localized; but a point along a straight edge can’t, because sliding a window around
the point along the edge leads to a new window that looks like the original. It must
be possible to find them reasonably reliably, even when image brightness changes.

Section 8.2 Interest Points 109

T

FIGURE 8.7: The response of the Harris corner detector visualized for two detail
regions of an image of a box of colored pencils (center). Top left, a detail from
the pencil points; top center, the response of the Harris corner detector, where
more positive values are lighter. The top right shows these overlaid on the original
image. To overlay this map, we added the images, so that areas where the overlap is
notably dark come from places where the Harris statistic is negative (which means
that one eigenvalue of H is large, the other small). Note that the detector is affected
by contrast, so that, for example, the point of the mid-gray pencil at the top of this
figure generates a very strong corner response, but the points of the darker pencils
do not, because they have little contrast with the tray. For the darker pencils, the
strong, contrasty corners occur where the lead of the pencil meets the wood. The
bottom sequence shows corners for a detail of pencil ends. Notice that responses
are quite local, and there are a relatively small number of very strong corners. Steve
Gorton (¢) Dorling Kindersley, used with permission.

Covariance: The location of the point must be covariant under at least some
natural image transformations. This means that, if the image is transformed, the
point will be found in an appropriate spot in the transformed image. Equivalently,
the points “stick to” objects in the image — if the camera moves, the point stays
on the object where it was, and so moves in the image. So if, for example, if Z, is
obtained by rotating Z;, then there should be an interest point at each location in
I, obtained by rotating the position of an interest point in Z;.

Covariant neighborhood: It must be possible to compute a description of
the image in the neighborhood of the point, so the point can be matched. Ideally,
corresponding points in different images will have similar descriptions, and different
points will have different images. Computing this description requires that the
neighborhood associated with the interest point is covariant. So, for example, if
the image is zoomed in, the neighborhood in the image gets bigger; and if it is
zoomed out, the neighborhood gets smaller. Using a fixed size neighborhood when

110 Chapter 8 Edges and Interest Points

o> o o o> o> o ¢ & v
o> o, o o> o > o> o o > o>
Two small One small, one large Two large

FIGURE 8.8: The matriz ‘H, defined in the text, behaves rather like a covariance
matriz. The figure shows examples of three different cases for 3 x 3 image windows
(the filled dots are the pizel locations). On the left, all gradients are small; verify
that, in this case, there will be two small eigenvalues. In the center, there are large
gradients, but all point in the same direction; verify, that in this case, there will be
one large and one small eigenvalue. On the right, there are large gradients that
point in a range of directions, as one would expect at a corner; verify that, in this
case, there will be two large eigenvalues.

the image zooms won’t work, because the neighborhood in the zoomed in image
will contain patterns that aren’t in the neighborhood in the zoomed out image.
Figure 8.6 illustrates these ideas. You can write covariance as:

neighborhoods(transformation(Z)) = transformation(neighborhoods(Z)).

It is usual to require covariance under rotations, translations and scale, and I will
focus on that case.

8.2.1 Finding Corners

Interest points are usually constructed at corners, because corners can be localized
and are quite easy to find with a straightforward detector. At a corner, there are
two important effects. First, there should be large gradients. Second, in a small
neighborhood, the gradient orientation should swing sharply. Identify corners by
looking at variations in orientation within a window. In particular, the matrix

H= > {(vnn'}

window

G, G, G, 3G,
- Z (a%v **I)(a%v * %) (aacfvc **I)(a%" * x7)
o= (S * *I)(a—y" * x7) (a—y" * x7)(B * *7)
gives a good idea of the behavior of the orientation in a window (Figure 8.8). In
a window of constant gray level, both eigenvalues of this matrix are small because
all the terms are small (exercises). In an edge window, there will be one large
eigenvalue (from gradients at the edge) and one small eigenvalue (few gradients run
in other directions; exercises). But in a corner window, both eigenvalues should
be large (exercises).
The Harris corner detector looks for local maxima of

det(H) — k(itracs(ﬂ))2

Section 8.2 Interest Points 111

FIGURE 8.9: The response of the Harris corner detector is unaffected by rotation
and translation. The top row shows the response of the detector on a detail of the
image on the far left. The bottom row shows the response of the detector on a
corresponding detail from a rotated version of the image. For each row, we show the
detail window (left); the response of the Harris corner detector, where more positive
values are lighter (center); and the responses overlaid on the image (right). Notice
that responses are quite local, and there are a relatively small number of very strong
corners. To overlay this map, we added the images, so that areas where the overlap
is notably dark come from places where the Harris statistic is negative (which means
that one eigenvalue of H is large, the other small). The arm and hammer in the
top row match those in the bottom row; notice how well the maps of Harris corner
detector responses match, too. (¢) Dorling Kindersley, used with permission.

where k is some constant [?]; I used 0.5 for Figure 8.7. These local maxima are
then tested against a threshold. This tests whether the product of the eigenvalues
(which is det(H)) is larger than the square of the average (which is (trace(H)/2)?).
Large, locally maximal values of this test function imply the eigenvalues are both
big. Figure 8.7 illustrates corners found with the Harris detector. This detector is
unaffected by translation and rotation (Figure 8.9).

8.2.2 The Radius of the Neighborhood

There are many ways of representing a neighborhood around an interesting corner.
Methods vary depending on what might happen to the neighborhood. In what
follows, assume that neighborhoods are only translated, rotated, and scaled (rather
than, say, subjected to an affine or projective transformation), and so without
loss of generality assume that the patches are circular. Obtaining a neighborhood
at a corner involves estimating the radius of the circle centered on the corner.
There is technical machinery available for the neighborhoods that result from more
complex transformations, but it is more intricate (see []). In most applications, the
construction here is sufficient.

To turn a corner into an image neighborhood, estimate the radius of the
circular patch (equivalently, its scale). The radius estimate should get larger pro-
portionally when the image gets bigger. For example, in a 2x scaled version of the

112 Chapter 8 Edges and Interest Points

FIGURE 8.10: The scale of a neighborhood around a corner can be estimated by find-
ing a local extremum, in scale of the response at that point to a smoothed Laplacian
of Gaussian kernel. On the left, a detail of a piece of fencing. In the center, a
corner identified by an arrow (which points to the corner, given by a white spot
surrounded by a black ring). Overlaid on this image is a Laplacian of Gaussian
kernel, in the top right corner; dark values are negative, mid gray is zero, and
light values are positive. Notice that, using the reasoning of Section 77, this filter
will give a strong positive response for a dark blob on a light background, and a
strong negative response for a light blob on a dark background, so by searching for
the strongest response at this point as a function of scale, we are looking for the size
of the best-fitting blob. On the right, the response of a Laplacian of Gaussian at
the location of the corner, as a function of the smoothing parameter (which is plot-
ted in pizels). There is one extremal scale, at approximately 2 pixels. This means
that there is one scale at which the image neighborhood looks most like a blob (some
corners have more than one scale). (¢) Dorling Kindersley, used with permission.

original image, the method should double its estimate of the patch radius. This
property helps choose a method. Center a blob of fixed appearance (say, dark on
a light background) on the corner, and then choose the scale to be the radius of
the best fitting blob. An efficient way to do this is to use a Laplacian of Gaussian
filter.

The Laplacian of a function in 2D is defined as

0? 0?
(VD) = 5.5+ 5.5

It is natural to smooth the image before applying a Laplacian. Notice that the
Laplacian is a linear operator and is shift invariant (exercises), meaning that we
could represent taking the Laplacian as convolving the image with some kernel
(which we write as Kv2). Because convolution is associative, we have that

(K2 * (Gy * 1)) = (Ky2 * Go) + T = (V?Gy) * T.

The reason this is important is that, just as for first derivatives, smoothing an
image and then applying the Laplacian is the same as convolving the image with
the Laplacian of the smoothing kernel. Figure 8.10 shows what happens for the
usual case where smoothing is Gaussian smoothing. This kernel looks like a dark
blob with a light ring around it on a gray background (closed form expression in
the exercises). As the scale of the Gaussian gets larger, the blob gets bigger.

Section 8.2 Interest Points 113

This means the Laplacian of Gaussian can be used to find the radius of the
neighborhood around a given corner located at i, j in Z. Write £, for a Laplacian
of Gaussian kernel where the Gaussian has scale 0. Now, for each o, place the
kernel on the image, centered at the corner, and compute

V(U) = Zzifu,jfvﬁo;uv-

uv

The o that maximizes (or minimizes) V(o) is the radius to use. This value has
strong covariance properties. Imagine image S is the same as Z, but is upsampled
factor of k. Then the value of o chosen by this procedure for S will be k times
the value chosen for Z. This is because the value is, essentially a dot-product (as
in Section 15.10), and scores the match between the image and the kernel. If the
image is upsampled by k, the best matching kernel should just k times the scale.
This argument works for downsampling as well as upsampling, and is fine as long
as there is no serious loss of information in the upsampling or downsampling (which
is most of the time).

Searching for the right o efficiently requires some care. If o is large, then
the kernel will be large. It is better to apply a small kernel to a downsized image
than a large kernel to the original image, so construct a gaussian pyramid from the
image. A very large o (say, half the image size) is implausible, so the pyramid does
not need too many layers. If there are enough interest points, it is more efficient
to convolve the image with the kernel then look at the values at relevant locations
than it is to apply the kernel at each interest point. These considerations lead to:

e Choose some values of o to search, say o € {o1,...,0,}. Construct Laplacian
of gaussian filters for these values.

e Construct a gaussian pyramid, downsampling by d for each layer.
e Convolve each layer of the pyramid with each of the filters.

e As a result, you know the value of the Laplacian of gaussian at each interest

point for o € {o1,...,0n,do1,...,doy,,d%01,...}. Interpolate these values
and choose the smallest o that achieves a maximum or minimum of the in-
terpolate.

8.2.3 The Rotation of the Neighborhood

Orientation histograms are a natural representation of image patches. However, you
cannot represent orientations in image coordinates (for example, using the angle to
the horizontal image axis), because the patch you are matching to might have been
rotated. You need a reference orientation so all angles can be measured with respect
to that reference (this is the filled gray circle in Figure 8.6). A natural reference
orientation is the most common orientation in the patch. Compute a histogram
of the gradient orientations in this patch, and find the largest peak. This peak is
the reference orientation for the patch. If there are two or more peaks of the same
magnitude, make multiple copies of the patch, one at each peak orientation.

114 Chapter 8 Edges and Interest Points

8.2.4 Describing Neighborhoods with Orientations

The final step is describing the image within the neighborhood. There are some
important constraints on this representation:

e The representation should be detailed and distinctive, so that points that
don’t match have different representations.

e The representation should not change if the image gets somewhat brighter or
darker.

e The representation should be robust to small errors in the estimates of the
location, scale and orientation of the neighborhood.

The first two requirements motivate using orientations, because complex textures
will have complicated — and so distinctive — orientation fields, and because orien-
tation fields don’t change when the brightness changes. Very dark or very bright
neighborhoods probably can’t be described accurately. For dark neighborhoods,
quantization of the pixel values creates problems; for bright neighborhoods, some
pixel values will have saturated. This motivates some form of thresholding on the
gradient values. Finally, robustness to small errors suggests using some form of
histogram.

Just constructing a histogram of the orientations is not enough, because it
confuses too many patterns with one another (for example, a narrow vertical dark
stripe will be confused with a broad vertical dark stripe). An alternative is to break
the neighborhood into overlapping bins and compute histograms within the bins.

These considerations underly the very important SIFT descriptor (for Scale
Invariant Feature Transform) is constructed out of image gradients, and uses both
magnitude and orientation. The descriptor is a set of histograms of image gradients
that are then normalized. The descriptor is normalized to suppress the effects of
change in illumination intensity. The histograms expose general spatial trends in
the image gradients in the patch but suppress detail. For example, if the interest
point finder makes small errors estimating the center, scale, or orientation of the
patch, then the rectified patch will shift slightly. As a result, simply recording the
gradient at each point yields a representation that changes between instances of
the patch. A histogram of gradients will be robust to these changes. Rather than
histogramming the gradient at a set of sample points, histogram local averages of
image gradients; this helps avoid noise.

The standard SIFT descriptor is obtained by first dividing the rectified patch
into an n X n grid. Then subdivide each grid element into an m x m subgrid of
subcells. At the center of each subcell, compute a gradient estimate. The gradient
estimate is obtained as a weighted average of gradients around the center of the
cell, weighting each by (1—d,/s;)(1—dy/s,)/N, where d, (resp. d) is the = (resp.
y) distance from the gradient to the center of the subcell, and s, (resp. s,) is the
x (resp. y) spacing between the subcell centers. This means that gradients make
contributions to more than one subcell, so that a small error in the location of the
center of the patch leads to a small change in the descriptor.

Now use these gradient estimates to produce histograms. Each grid element
has a g-cell orientation histogram. The magnitude of each gradient estimate is

Section 8.2 Interest Points 115

>
>
Subgrid ﬁ:l:lﬁ

TTNTT -
"H/HHHA §§
T 5 &
N RN V) a2
I DR n+* gE
N SR —) 5
S Grgdlent ERS
= Subgrid estimate gg
L — element g
21 »
111 f > g

Neighborhood Grid

Grid element
histograms

FIGURE 8.11: To construct a SIFT descriptor for a neighborhood, place a grid over
the rectified neighborhood. FEach grid is divided into a subgrid, and a gradient es-
timate is computed at the center of each subgrid element. This gradient estimate
is a weighted average of mearby gradients, with weights chosen so that gradients
outside the subgrid cell contribute. The gradient estimates in each subgrid element
are accumulated into an orientation histogram. Each gradient votes for its orien-
tation, with a vote weighted by its magnitude and by its distance to the center of
the neighborhood. The resulting orientation histograms are stacked to give a single
feature vector. This is normalized to have unit norm; then terms in the normalized
feature vector are thresholded, and the vector is normalized again.

TODO: Source, Credit, Permission: SIFTPIC

accumulated into the histogram cell corresponding to its orientation; the magnitude
is weighted by a Gaussian in distance from the center of the patch, using a standard
deviation of half the patch.

Concatenate each histogram into a vector of n X n x g entries. If the image
intensity were doubled, this vector’s length would double (because the histogram
entries are sums of gradient magnitudes). To avoid this effect, normalize this vector
to have unit length. Very large gradient magnitude estimates tend to be unstable
(for example, they might result from a lucky arrangement of surfaces in 3D so that
one faces the light directly and another points away from the light). This means that
large entries in the normalized vector are untrustworthy. To avoid difficulties with
large gradient magnitudes, each value in the normalized vector is thresholded with
threshold ¢, and the resulting vector is renormalized. Standard parameter values
aren =4, m=4,q=38, and t = 0.2. SIFT features are patented (US6711293B1),
but the patent has expired. David Lowe (the inventor) provides a reference ob-
ject code implementation at http://www.cs.ubc.ca/~lowe/keypoints/. There is
also an implementation in OpenCV (currently at https://docs.opencv.org/4.
x/da/df5/tutorial _py_sift_intro.html). There is now extensive experimental
evidence that image patches that match one another will have similar SIFT feature
representations, and patches that do not will tend not to.

