CHAPTER 7

Applications of the Fourier
Transform

Further, it makes it possible to think about what interpolation does to a signal
(recall Section 5.3.3 establishes that interpolation is a convolution).

7.1 USING THE CONVOLUTION THEOREM

The convolution theorem (line 12 of Table ?7?) says convolution in the signal domain
is the same as multiplication in the Fourier domain. This makes it possible to
visualize the effect of a linear filter in the Fourier domain. Because the inverse
Fourier transform is a Fourier transform (up to a flip, above), the convolution
theorem works both ways. Multiplication in the signal domain is the same as
convolution in the Fourier domain.

7.1.1 Making Big Filters Faster with the FFT

One application of the convolution theorem illustrates some possible difficulties
building filters. Write
)
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ga(mvy) =

then
f(ga(xvy)) = Cgﬁ (u,v)

(where the constant C' depends on o — work out the details in the exercises ).
There is a big point here: a gaussian that is spread out in x, y is concentrated in u,
v, and vice versa. This is a rather distant manifestation of Heisenberg’s uncertainty
principle. Now consider building a low pass filter that accepts a very small range of
spatial frequencies. This could be modelled as multiplying the Fourier transform of
the image by a gaussian with very small o. The convolution kernel that implements
this filter is the inverse Fourier transform of this gaussian — which has very large o.
You would need a very large convolution to implement this filter without further
tricks.

This suggests, correctly, that there are some circumstances where the convo-
lution theorem might offer an efficient way to filter an image if the kernel of the
filter is very large and very smooth. In some cases, it is actually better to apply
an FFT to the image; multiply the result by the FFT of the filter; then apply an
inverse FFT to the result. Cases where there is an efficiency gain exist, but are
rather special.

Most practical applications of very large filter kernels involve very aggressive
smoothing. But if an image is going to be heavily smoothed, it will lose a lot of
detail, and the detailed form of the smoother might not matter much. Further,
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FIGURE 7.1: A Fourier transform explains where the ringing of Figure 2.12 comes
from. The top row shows the magnitude spectrum of the beard image. I have shown
the actual magnitude (rather than log magnitude), because doing so makes the issue
clearer. The first image shows the magnitude clipped to the range 0-1 (this is all
light); the second the magnitude clipped to the range 0-10; the third, clipped to the
range 0-100; and the fourth, clipped to the range 0-1000. Center left shows the
magnitude of the Fourier transform of the unweighted averaging filter, and the rest
of the images are the magnitude of the Fourier transform of the filtered images,
clipped to the ranges as for the original image. Bottom left shows the magnitude
of the Fourier transform of the Gaussian filter, and the rest of the images are the
magnitude of the Fourier transform of the filtered images, clipped to the ranges as
for the original image.

applying a very large filter kernel to smooth is very expensive. If you are willing
to accept a Gaussian smoother (the usual case), significant efficiency gains are
available. Recall that

9o, ¥ Goy = 9 /U%Jrgg

(exercises ). Equivalently, smoothing with a big Gaussian is equivalent to
smoothing with a smaller Gaussian, then smoothing again with that smaller Gaus-
sian. But once you have smoothed with a Gaussian, you can subsample, suggesting
that to smooth heavily, you should smooth lightly, subsample, smooth lightly again,
and so on. This is the gaussian pyramid of Section 2.3.5. Each layer of the gaussian
pyramid is obtained by convolving the previous layer with a gaussian, then down-
sampling. For the moment, ignore the downsampling, and write Z for the image.
Then layer 0 is 7 and layer N is g, * g, * ... * Z which is the same as g_ 7 * L.
Downsampling doesn’t really affect this argument (which is why I omitted it), but
just makes the convolution more efficient by removing redundant values.

These scaling effects are interesting for more than just gaussians. Imagine you
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wish to find large stripes in a large image (which you could do by applying a large
convolution kernel to that image). A natural strategy is to downsample both kernel
and image, and apply the small version of the kernel to the small image. Further,
you could find many different sizes of stripe efficiently by applying one stripe filter
to each layer of a gaussian pyramid. Responses at the early layers give fine stripes,
and at the later layers give coarse stripes.

Line 8 of the table together with the convolution theorem supports this
idea. Imagine you have a filter f(z,y) that detects a small pattern. Then (say)
f(z/10,y/10) will detect a larger version of this pattern. Now line 8 shows that
the Fourier transform of this new scaled filter will shrink by a factor of 10 in u,v
space, so the value depends on only low spatial frequencies. In turn, not much will
be lost if you apply the scaled filter to a low pass filtered version of the image.
Further, applying the scaled filter to a low pass filtered version of the image will
be equivalent to applying the original filter to a scaled version of the image (line 8
again). But this is equivalent to applying the original filter to a downsampled layer
of the gaussian pyramid.

7.1.2 Ringing

Recall the ringing effect of Figure 2.12. Here smoothing by just computing an
unweighted average managed to create some fine details. A Fourier transform offers
an easy explanation — the magnitude of the Fourier transform of the unweighted
averaging filter falls off much more slowly with frequency than that of the Gaussian
filter. In turn, the unweighted averaging filter preserves some high frequencies,
which are the ringing effect. The effect is quite difficult to see if one looks at
the log of the Fourier transform magnitude, so Figure 7.1 shows the magnitude.
Because the magnitude has very large dynamic range, I have shown the magnitude
clipped to a variety of different ranges. Notice how the unweighted averaging filter
has some high frequency terms that are much larger than Gaussian filter terms
at the same frequency. These terms mean the image filtered with the unweighted
average filter has considerable high frequency energy at some frequencies — these
terms are the ringing.

Remember this: The convolution theorem has consequences. Some
convolutions, typically with very large filters, can be more efficiently com-
puted in the Fourier domain, though this is unusual in current applications.
You can obtain a good estimate of the result of filtering an image with a
large kernel by filtering a smoothed and subsampled version of the image
with smaller kernel. Smoothing by just computing an unweighted local av-
erage creates unexpected fine details. This ringing, which occurs with other
filters as well, is explained by the convolution theorem and the Fourier trans-
form of the filter kernel.
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FIGURE 7.2: The Fourier transform of the sampled signal consists of a sum of copies
of the Fourier transform of the original signal, shifted with respect to each other by
the sampling frequency. If the shifted copies do not intersect with each other (as in
this case), the original signal can be reconstructed from the sampled signal (just cut
out one copy of the Fourier transform and inverse transform it).

7.2 SAMPLING AND ALIASING

The crucial reason to discuss Fourier transforms is to get some insight into the
difference between discrete and continuous images. In particular, it is clear that
some information has been lost when you work on a discrete pixel grid, but what?
A good, simple example comes from an image of a checkerboard, and is given
in Figure 2.8. The problem has to do with the number of samples relative to the
function; you can formalize this rather precisely given a sufficiently powerful model.

7.2.1 The Fourier Transform of a Sampled Signal

As Section 5.3.3 showed, an appropriate continuous model of a sampled signal
consists of a d-function at each sample point weighted by the value of the sample
at that point. You can obtain this model by multiplying the sampled signal by
a set of d-functions, one at each sample point. In one dimension, a function of
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FIGURE 7.3: The Fourier transform of the sampled signal consists of a sum of copies
of the Fourier transform of the original signal, shifted with respect to each other
by the sampling frequency. If the shifted copies intersect (as in this figure), the
intersection region is added, and so you cannot obtain a separate copy of the Fourier
transform, and the signal has aliased. This also explains the tendency of high spatial
frequencies to alias to lower spatial frequencies.

this form is called a comb function (because that’s what the graph looks like). In
two dimensions, a function of this form is called a bed-of-nails function (for the
same reason). By the convolution theorem, the Fourier transform of this product
is the convolution of the Fourier transforms of the two functions. This means that
the Fourier transform of a sampled signal is obtained by convolving the Fourier
transform of the signal with another bed-of-nails function.

Now convolving a function with a shifted d-function merely shifts the function
(see exercises). This means that the Fourier transform of the sampled signal is
the sum of a collection of shifted versions of the Fourier transforms of the signal.
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(where F(f)(u —i,v — j) is the Fourier transform of f, evaluated at u — i, v — j).
If the support of these shifted versions of the Fourier transform of the signal does
not intersect, reconstructing the signal from the sampled version is straightforward.
Take the sampled signal, Fourier transform it, and cut out one copy of the Fourier
transform of the signal and Fourier transform this back (Figure 7.2).

However, if the support regions do overlap, you are not able to reconstruct the
signal because you can’t determine the Fourier transform of the signal in the regions
of overlap, where different copies of the Fourier transform will add. This results in
a characteristic effect, usually called aliasing, where high spatial frequencies appear
to be low spatial frequencies (see Figures 7.4, 7.5 and exercises). Our argument
also yields Nyquist’s theorem: the sampling frequency must be at least twice the
highest frequency present for a signal to be reconstructed from a sampled version.
By the same argument, if you happen to have a signal that has frequencies present
only in the range [(2k — 1)w, (2k + 1)w], then we can represent that signal exactly
if we sample at a frequency of at least 2w.

Nyquist’s theorem means that, to avoid aliasing, you should either sample a
continuous function at a high enough sampling rate (the Nyquist limit — twice the
highest frequency present in the function) or low pass filter the function before you
sample it. This filter should (at least!) remove all frequencies above half the sam-
pling rate. You can’t do this exactly, making exact reconstruction at the Nyquist
limit unobtainable. You may think you could reconstruct exactly by multiplying
the function’s Fourier transform by a scaled 2D box function, but doing so is equiv-
alent to convolving the function with a kernel that has infinite support (convolution
theorem, and line 7 of table ??), which is impossible.

A gaussian is a low-pass filter because its response at high spatial frequencies
is low and its response at low spatial frequencies is high, so the downsampling
process of Section 2.3.3 is justified. In fact, the Gaussian is not a particularly
good low-pass filter. It is possible to design low-pass filters that are significantly
better than Gaussians. The design process involves a detailed compromise between
criteria of ripple—how flat is the response in the pass band and the stop band?—
and roll-off—how quickly does the response fall to zero and stay there? Mostly,
the advantages of being able to use a gaussian pyramid and the complexities of
better filter design mean that, in practice, smoothing for subsampling is done with
a gaussian.
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FIGURE 7.4: The top row shows sampled versions of an image of a 512x512 grid
obtained by multiplying two sinusoids with linearly increasing frequency—one in x
and one in y. The other images in the series are obtained by resampling by factors
of two without smoothing. These have been scaled to the same size. Note the
substantial aliasing; high spatial frequencies alias down to low spatial frequencies,
and the smallest image is an extremely poor representation of the large image.
The bottom row shows the Fourier transforms of these images, again scaled to
be the same size. Notice how with downsampling by two, the Fourier transform
looks like the center block of the Fourier transform of the original image. When the
downsampling is more aggressive, the Fourier transform becomes very different — the
overlaps are now so pronounced that the sum of shifted original Fourier transforms
1s very different from the original Fourier transform.

7.2.2  Smoothing and Downsampling

It is easier to explain sampling and aliasing in the context of passing from a con-
tinuous signal to a sampled signal. In the usual case, you have an image that has
been sampled already and you want to downsample it. Nyquist’s theorem applies
here, too. The Fourier transform of the sampled image consists of a set of copies
of some original Fourier transform, with centers shifted to integer points in u, v
space. This is true whether there is aliasing or not.

If the sampled image is downsampled by two, for example, the copies now have
centers on the half-integer points in u, v space. You don’t know the original Fourier
transform and can only infer it from the sampled image’s Fourier transform (you
could use the procedure of Figure 7.2). This means that if the original sampled
image has aliasing you can’t get rid of it by downsampling (Figure 7.3). You
can make the aliasing worse, however. If you downsample, you are moving the
shifted copies closer together, and risking an overlap. To avoid this overlap, requires
applying a filter that strongly reduces the content of the original Fourier transform
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FIGURE 7.5: The top row shows sampled versions of an image of a 512x512 grid
obtained by multiplying two sinusoids with linearly increasing frequency—one in x
and one in y. The other images in the series are obtained by smoothing with a
Gaussian of o = 1, then resampling by factors of two without smoothing. These
have been scaled to the same size. Compare this figure with Figure 7.4. The smallest
image is now a better representation of the large image. The bottom row shows
the Fourier transforms of these images, again scaled to be the same size. Notice
how with downsampling by two, the Fourier transform looks like the center block
of the Fourier transform of the original image. When the downsampling is more
aggressive, the Fourier transform still looks a bit like the center block, but mow
low-pass filtered.

outside the range |u| < 1/2, |v| < 1/2 before you resample the signal.

Remember this:  Fourier theory explains aliasing. The Fourier trans-
form of a sampled signal is the sum of a set of shifted copies of the Fourier
transform of the original signal. If these copies overlap, then you can’t
reconstruct the original signal from the sampled signal. If they don’t, you
can. To avoid aliasing, either sample often enough or apply a low-pass filter
before sampling. All these observations apply to resampling as well as to
sampling.




