
C H A P T E R 3

Geometric Image Transformations

3.1 POINTWISE IMAGE TRANSFORMATIONS

The camera response function of Section 2.1 is one example of a pointwise image
transformation. Most such transformations occur after the image has been digitized.
You take the array of pixels and apply some function to each pixel value. Simple, but
useful, examples include: forming a negative (map x to 1−x); contrast adjustment
(choose a function that makes dark pixels darker and light pixels lighter); and
gamma correction (using a function that corrects for a quirk of image encoding,
Figure 3.1).

3.2 GEOMETRIC TRANSFORMATIONS

There are a number of important and useful geometric transformations of the plane
that can be applied to images. Image transformations are implemented in the
same way as subsampling: by scanning the pixels of the target and modifying
them using interpolates of pixels from the source. This means it is important
that transformations are invertible. Adopt the convention that a point x = (x, y)
is mapped by a transformation to the point u = (u, v) = (u(x, y), v(x, y)), and
u = (u, v) is mapped to x = (x, y) by the inverse. In vector notation, x is mapped
to u, and so on. Write A for a 2× 2 matrix, whose i, j’th component is aij .

Definition: 3.1 Translation

Translation maps the point (x, y) to the point (u, v) = (x+ tx, y+ ty)
for two constants tx and ty. Here (x, y) = (u − tx, v − ty). In vector
notation,

u = x+ t and x = u− t.

Translation preserves lengths and angles. Choose two points x1 and x2. The
squared distance from x1 to x2 is (x1 − x2)

T (x1 − x2); but for a translation (u1 −
u2) = (x1 − x2). A similar argument shows that angles are preserved (exercises
).

36
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gamma=2

gamma=0.5

FIGURE 3.1: Many imaging and rendering devices have a response that is a power
of the input, so that output = Cinputγ , where γ is a parameter of the device. One
can simulate this effect by applying a transform like those shown in the center
(curves for several values of γ). Note that you can remove the effect of such a
transform – gamma correct the image – by applying another such transform with an
appropriately chosen γ. The image on the left is transformed to the two examples
on the right with different γ values. Image credit: Figure shows my photograph of
a river in Singapore.

Definition: 3.2 Rotation

Rotation takes the point (x, y) to the point

(u, v) = x cos θ − y sin θ, x sin θ + y cos θ.

Here θ is the angle of rotation, rotation is anti-clockwise, and

(x, y) = u cos θ + v sin θ,−u sin θ + v cos θ.

Write R for a rotation matrix (a matrix where RTR = I and det(R) =
1); then

u = Rx and x = R−1u = RTu.

Rotation preserves lengths and angles. Choose two points x1 and x2. The
squared distance from x1 to x2 is (x1−x2)

T (x1−x2); but for a rotation (u1−u2) =
R(x1 − x2) and RTR = I. A similar argument shows that angles are preserved
(exercises ).
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Definition: 3.3 Euclidean transformations

A Euclidean transformation is a rotation and translation, so
(u(x, y), v(x, y)) = (x cos θ− y sin θ+ tx, v(x, y) = x sin θ+ y cos θ+ ty).
Euclidean transformations preserve lengths and angles (and so areas)
and are sometimes referred to as rigid body transformations. Here
(x, y) = ((u − tx) cos θ + (v − ty) sin θ,−(u − tx) sin θ + (v − ty) cos θ).
In vector notation, for R a rotation,

u = Rx+ t and x = RT (u− t).

Euclidean transformations preserve lengths and angles (you can think of a
Euclidean transformation as a rotation followed by a translation).

Definition: 3.4 Uniform scaling

For uniform scaling, (u, v) = (sx, sy) for s > 0. Here (x, y) =
(1/su, 1/sv). In vector notation,

u = sx and x = (1/s)u.

Uniform scaling preserves angles, but not lengths (exercises ).

Definition: 3.5 Non-uniform scaling

For non-uniform scaling, (u, v) = (sx, ty) for s and t both positive,
and so (x, y) = (1/su, 1/tv). Write diag(s, t) for the matrix with s and
t on the diagonal. In vector notation,

u = diag(s, t)x and x = diag(1/s, 1/t)u.

Non-uniform scaling will usually change both lengths and angles.

Definition: 3.6 Affine transformations

Affine transformations are better written in vector notation. Write
A for a 2×2 matrix which is invertible, and t for some constant vector.
Here

u = Ax+ t and x = A−1(u− t).

Affine transformations will usually change both lengths and angles.
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Definition: 3.7 Projective transformations

Projective transformations involve quite inefficient notation if one
does not know homogenous coordinates (Section ??), and writing them
in vector form is clumsy. Write pij for the i, j’th component of a 3× 3
matrix P that is invertible. Then[

u
v

]
=

[
p11x+p12y+p13

p31x+p32y+p33
p21x+p22y+p23

p31x+p32y+p33

]
.

The inverse transformation is obtained by applying the inverse of P to
u according to the recipe above. For a vector representation, write

P =

 pT
1 p13

pT
2 p23

pT
3 p33


for a 3× 3 array with inverse Q. Then

u =

 pT
1 x+p13

pT
3 x+p33

pT
2 x+p23

pT
3 x+p33

 and x =

 qT
1 u+q13

qT
3 u+q33

qT
2 u+q23

qT
3 u+q33


Notice that all the classes of transformation described are special cases of a

projective transformation (exercises ). Notice also that if P = λQ for some
λ ̸= 0, then P and Q implement the same projective transformation.

Remember this: Each type of geometric transformation is important.
You should memorize the definitions.

3.3 GEOMETRIC TRANSFORMATIONS OF IMAGES

One never really applies a geometric transform to an image. For example, on its
face translating an M ×N image by (2, 2) suggests just changing the labels of the
pixel locations from 1 . . .M and 1 . . . N to 3 . . .M + 2 and 3 . . . N + 2. Very little
good will come from this approach. Instead, you transform the image and put it
in another image. So in the example, you’d have a target image, and replace its
pixel values with the image you were translating. This very minor point is a source
of some irritations, because you may need to keep track of where the transformed
image goes, otherwise it may disappear (not an exaggeration; example below).

Notation: Transformations always take a source image S which is sM × sN
to a target image T which is tM × tN . I will need to refer to image values both
at integer points – which I will write Sij – and at points that are possibly not
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FIGURE 3.2: The most common coordinate system for images, on the left mirrors
that for arrays. The origin is at the top left corner, and we count in pixels. This
is an M × N image. I will use the convention Iij for points in this coordinate
system, so the top right pixel is I1M . It is usual for pixel locations to be indexed
starting at 1 (so 1 ≤ i ≤ M and 1 ≤ j ≤ N). In some environments (notoriously,
Python), the index starts at 0; in others (eg Matlab), it starts at 1. Keep track of
this point, or you will lose some pixels. On the right, the origin is at the bottom
left, and the coordinate axes are more familiar. It is a good idea to use a range
from 0 − 1 (rather than 0 −M) in this coordinate system, but if the image is not
square one direction will run from 0 to a. Converting from one coordinate system
to the other is straightforward, but not being consistent about the coordinate system
you are working in is an important source of simple, annoying errors. I will always
work in the coordinate system shown on the left.

sample points – S(x, y). For points that are not sample points, care is required. If
1 ≤ x ≤ sM and 1 ≤ y ≤ sN , then S(x, y) can be obtained by interpolation.

As in Section 2.2, the correct general procedure is to scan the pixels of T and
then modify them using interpolates of pixels from S. This means it is important
that transformations are invertible, and both (u(x, y), v(x, y)) and (x(u, v), y(u, v))
are known. Imagine the inverse transformation takes a point u, v in T ’s sample
grid to some point x, y such that it is not true that 1 ≤ x ≤ sM or it is not true
that 1 ≤ y ≤ sN . You might, for example, report the value unknown (because it
certainly is), and leave the u, v pixel in T unchanged. This is inefficient. It is
usually a good idea to work out which values of u and v will lead to legitimate
pixels, and scan only those values. Doing this efficiently requires some care, and is
outside scope. An API will do all this for you.

Coordinate systems: The most common convention for image coordinate
systems is strange at first glance. This coordinate system is shown in Figure 3.2 on
the left. The inversion of the y-axis and of the order of coordinates is an annoying
leftover from the way matrices are indexed. It is quite usual to use this coordinate
system, and I will do so in what follows. Readers should be aware that there are
a variety of alternative conventions, and the choice of coordinate system has a
significant effect on the expressions used to describe image transformations.
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FIGURE 3.3: When you transform an image, you must put it in a target image.
The gray circles on the left represent the sample locations for a small image. On
the right, this is placed at various different locations in the larger image (black
samples). For translation to the green location, and using our current interpolation
procedure, there will be no problem pasting the image, but the pasted region will
be slightly smaller than the original. For the purple location, you will not see all
pixels on the pasted image, because some pixels fall outside the target image range.
This could be a desirable outcome. In the red location, you see no pixels from the
translated image.

3.3.1 Cropping, Pasting, Blending and Translation

Procedure: 3.1 Cropping

Cropping creates a smaller target image from a source image. One
specifies a crop window in the sM×sN source image by 1 ≤ xn, xx ≤M
and 1 ≤ yn, yx ≤ N . Here the vertices of the window are integers, and
there is no interpolation. The target image is an (xx − xn)× (yx − yn)
image. For 1 ≤ i ≤ xx − xn and 1 ≤ j ≤ yn − yx, we have

Tij = Si−xn,j−yn

Procedure: 3.2 Pasting

Pasting replaces pixels in a target image with pixels from a source image
using a transformation. For each of a collection of pixel locations u, v
in T :

• compute x(u, v) and y(u, v);

• obtain p = S(x, y) by interpolation, reporting unknown if x, y falls
outside S;

• and, if p ̸= unknown, set Tuv = p.
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FIGURE 3.4: The chicken in the left image has been cropped to yield the center
image (which is 162 × 187), then translated and pasted to various points in the
left image, to yield the images on the right. Note the choice of coordinate system
strongly affects the value of translation. The chicken’s origin is at the top left
hand corner, yielding the translations shown in the overlay (left image scales are
shown for reference). You should check you agree the translations indicated yield
the chickens shown. Image credit: Figure shows my photograph of jungle fowl in
Singapore.

It is a good idea, when pasting, to have a convenient representation of the
pixel locations. This is easy if, for example, the transformation is a translation, but
less so if it is a projective transformation. Pasting one image into another doesn’t
always yield good results, and you will often see visible lines on the outline of the
transformed source image. This effect can be controlled quite well by blending
using a mask.

Procedure: 3.3 Blending

Blending uses a weight replaces pixels in a target image with a weighted
sum of their original value and that of a pixel from a source image using
a transformation and a specified set of weights. For each of a collection
of pixel locations u, v in T , where each has a weight w(u, v):

• compute x(u, v) and y(u, v);

• obtain p = S(x, y) by interpolation, reporting unknown if x, y falls
outside S;

• and, if p ̸= unknown, set Tuv = wp+ (1− w)Tuv.
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Blended

Mask

FIGURE 3.5: The chickens of Figure 3.4 are simply pasted in the top row (as in
that figure, reproduced here for comparison; the arrow on the left shows a problem
with pasting not identified in that figure). In the bottom row, the chickens have
been blended using the blending mask shown. Note the pasting is much less obvious.
Image credit: Figure shows my photograph of jungle fowl in Singapore.

A good way to obtain blend weights is to have a map of blending weights, the
same size as the source image. Typically, weights will be small at the boundary
and bigger in the interior. Managing the collection of pixel locations in case of
translation is particularly easy – you find the largest box of points that are in T
and where the inverse translation maps them to points in S (Figure ??). Notice
that even in this case, you can come up with a transformation that appears to have
no effect because translation can result in the source image ending up outside the
window of the target image.

Procedure: 3.4 Translating an image

Apply the recipe for either pasting or blending, using a translation as
the transformation.

Translation can yield quite convincing composite images (Figure ??). How-
ever, close scrutiny of the multi-chicken image shows boundaries of the window
where the translated chicken was pasted. These boundaries can be spotted because
the grass on the left of the chicken is a little darker than the grass on which it was
placed. Figure 3.5 indicates, blending can suppress problems at boundaries fairly
effectively.
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(0, 0)

(0, 187)

(162, 0)

(-90, 164)

(52, 241)

(142, 78)
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(1, 0)
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θ

FIGURE 3.6: Left shows the image coordinate system for reference, together with the
result of rotating coordinate axes clockwise by θ (which in this example is 0.5 radi-
ans, about 300). Notice that a significant chunk of the source image ends up with
negative coordinates. Right shows the original source rectangle from the cropped
chicken of 3.4 (recall this is 162×187) as an open rectangle, and the rotated source
rectangle in gray. The target image is then set up to enclose the whole result (im-
plicitly translating the rotated source image) and pixels are then scanned into the
target.

3.3.2 Scaling

Uniform scaling involves two cases. Section 2.2 dealt with the case s > 1. Uni-
form scaling for s < 1 is downsampling, and has been dealt with in some detail in
Section 2.3.

Non-uniform scaling presents a combination of problems. If, say s > 1 and
t < 1, we are upsampling in one direction and downsampling in the other. If t is
relatively close to 1 (so there is not much downsampling), it is usually sufficient
to ignore the upsampling, apply a gaussian smoother to the source, then resample
with interpolation. If the downsampling is very aggressive, it may be better to
smooth in one direction only, which is beyond scope.

3.3.3 Rotation, Affine and Projective Transformations

These transformations present problems. I will use rotation as an example. Imagine
rotating the grid of positive integer points by 1800 anti-clockwise around the origin
– all the grid points are still integer, but they are now all negative. This means
that you can rotate an image and have an empty result because all the pixels in
the rotated image are outside the span of the target image. Usually, this is fixed
by translating the image as well as rotating it. You can interpret this as rotating
the image about the image’s center, rather than about the point 0, 0. Another
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Nearest Neighbors Bilinear

FIGURE 3.7: The chicken of Figure 3.4, rotated by 0.5 radians as in Figure 3.6,
showing the effect of different choices of interpolation. I have zoomed in on a
section of the tail feathers to make the difference more apparent. Image credit:
Figure shows my photograph of jungle fowl in Singapore.

problem is caused by the fact that the rotated image usually spans more pixels in
the coordinate directions than the source image (Figure 3.6).

The result of these problems is that most APIs use definitions of these trans-
formations that aren’t what you might expect. Alternatives include:

• Just apply the transformation (so, for example, rotate the image about the
origin). This option is rare, because it is annoyingly common that you see no
pixels of the source image in the result.

• Create an empty target image whose horizontal and vertical spans are big
enough to contain the transformed image, then apply the transformation to
the source image and paste it in the target image. You will see all pixels in
the source image, but there will be target pixels that are unknown – typically,
these contain zero. This option is common.

• Create an image as in the previous option, but then crop it to the largest
rectangle that lies inside the known pixels. In this case, every pixel comes
from the source image, but you will miss some pixels. This option is also
common.
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Procedure: 3.5 Transforming an image

For a transformation F :

• Write x1 = (1, 1)T , x2 = (sM , 1)
T , x3 = (sM , sN )T and x4 =

(1, sN )T for the four vertices of the source image.

• Compute ui = F(xi) for the result of applying the transformation
to these vertices. Now write un, ux for the smallest (resp. largest)
value of the first component of these points; similarly, vn, vx for
the smallest (resp. largest) value of the second component of these
points.

• T is now a ceil(ux − un) + 1× ceil(vx − vn) + 1 image.

• For each i, j in the range of T

– Write (x(i, j), y(i, j))
T
= F−1((i, j)

T
).

– If 1 ≤ x ≤ sM and 1 ≤ y ≤ sN then

Tij ← S(x(i+ un − 1, j + vn − 1), y(i+ un − 1, j + vn − 1))

interpolating as required.

Optionally, crop T to the size of the largest rectangle inside the trans-
formed source (exercises ).

The choice of interpolate has a real effect (Figure 3.7).
Affine transformations follow the recipe for the rotation. However, an affine

transformation may involve a component of scaling, which might be non-uniform.
One way to see this is to apply a singular value decomposition to A which will yield

A = UΣVT

where U and V are rotations. But Σ is diagonal, and may be non-uniform. As long
as the values on the diagonal of Σ are not too different, and the smallest is not too
small, then one can apply a gaussian smoother to the source, and resample with
interpolation. A robust smoothing strategy is firmly beyond scope, however.

Projective transformations follow the same general recipe as rotations, but
smoothing is now tricky. For a general projective transformation, there might be
singular points, caused by a divide-by-zero. For geometric reasons, these projective
transformations do not arise in cases interesting to us (Section 15.10), and should be
seen as evidence of a problem elsewhere. Nasty smoothing problems occur because
at some pixels a projective transformation may upsample an image and at different
pixels downsample the image. For this effect, look at Figure 3.9 and consider what
happens if the transform scales the image as well (the exercises do the details).
It is relatively straightforward to predict at a given pixel whether downsampling
is occuring, and the degree of downsampling (exercises ), meaning a gaussian
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(0, 187)

(162, 0)
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1,     0.3
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FIGURE 3.8: Top left shows the image coordinate system for reference. In this
coordinate system, the affine transformation whose matrix is shown at the bottom
is applied to the original chicken crop of Figure 3.4 (recall this is 162 × 187; open
rectangle). The gray diamond indicates the result. The target image is then set
up to enclose the whole result, and pixels scanned into the target. In this case, the
source image was not smoothed, because there is relatively little downsampling (the
diamond is not much smaller than the open rectangle). Top right shows the result
using nearest neighbors interpolation, and bottom right shows the result using
bilinear interpolation. Look closely at the tail feathers to see the difference.

pyramid is useful. At a pixel in the target image, predict which location in the
source image will be used; estimate the degree of smoothing required; then look at
the relevant layer of the gaussian pyramid. This strategy is sometimes referred to
as MIP-mapping.

Remember this: Transform a source image by: determining how big
the transformed image will be; constructing a target image that will span
the bits you want; then scanning the target, picking up pixels from the
source image using the inverse transformation. There are several different
possible choices of what pixels from the transformed image you want, and
APIs usually implement most.
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(0, 0)
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1/3,                         0,            0
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(0, 2*187/3)

Bilinear
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FIGURE 3.9: Top left shows the image coordinate system for reference. In this coor-
dinate system, the projective transformation whose matrix is shown at the bottom
is applied to the original chicken crop of Figure 3.4 (recall this is 162 × 187; open
rectangle). The gray region indicates the result. Note that the projective transfor-
mation has taken the rectangular source to a shape that is not even a parallelogram.
The target image is then set up to enclose the whole result, and pixels scanned
into the target. In this case, the source image was not smoothed, because there is
relatively little downsampling (the gray region is not much smaller than the open
rectangle). Top right shows the result using nearest neighbors interpolation, and
bottom right shows the result using bilinear interpolation. Look closely at the tail
feathers to see the difference.

3.4 APPLICATIONS

3.4.1 Aligning Color Separations by Translation

Simple geometric transformations can be extremely useful. One application comes
from early color photography. Color photography is usually dated to the 1930’s
when it first became available to the public. In fact, James Clerk Maxwell described
a method to capture a color photograph in an 1855 paper. The procedure likely
looks straightforward to you: obtain three color filters, and take a picture of the
scene through each of these filters. Capturing these color separations presented a
number of technical challenges, and the first color photograph was taken by Thomas
Sutton in 1861. Actually displaying pictures obtained like this was tricky. One had
to pass red light through the red separation, green through the green, and blue
through the blue, then ensure all three resulting images lay on top of one another
on screen. Turning them into the image files we are familiar with is also tricky,
because each layer of the separation is typically a bit offset from the others (the
camera moved slightly between photographs), and each layer has aged and been
damaged slightly differently.

Separations are in register if they lie over one another exactly and so form a
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Squared error
Correlation Cosine distance

FIGURE 3.10: Top left shows a Gurnard, flashing its pectoral fins in alarm. Top
rest shows the color separations of this image (in red, green, blue order). The
image is slightly blue-green (taken at about 5 meters depth, where water absorbs
red light), and this shows as a darker red separation. Bottom shows how various
cost functions react to registering red to blue. The correct alignment is at 0, 0 and
the images are 257 by 323. Notice that: all the extrema are in the right place,
but the correlation and cosine distance must be maximized, and the squared error
minimized; the squared error changes relatively little from the best to the worst,
because the blue image is rather unlike the red; both cosine distance and correlation
are much more sensitive than SSD – they fall off much more quickly than the SSD
rises. Image credit: Figure shows my photograph of a Gurnard, at Long Beach in
Cape Town.

color image. If they are out of register, objects will have slight, odd color halos.
Early color separations tend not to be in register. A class assignment, now hallowed
by tradition in computer vision, but likely to have originated with A. Efros in 2010,
uses the pictures of Sergei Mikhailovich Prokudin-Gorskii (1863-1944). Prokudin-
Gorskii traveled the Russian empire and took color photographs of many scenes.
He left Russia in 1918. His negatives survived and ended up in the Library of
Congress. A digitized version of the collection is available online. The assignment
asks students to register the color separations for some of these images.

There is a natural strategy: write a function that is smallest when the G
(respectively B) separation is in register with the R separation; now search for the
best value of the cost function obtained by small translations of the G (respectively
B) separation.

The search is easy when the separations are at relatively low resolution. The
offsets will be relatively small (a few pixels or so). It is then practical to simply
evaluate the cost function at a grid of translations, and choose the best (fussier
readers might interpolate, exercises). The remaining issue is the cost function.
Section 3.4.2 describes a number of possible cost functions.

This assignment requires care when one works with the high resolution ver-
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sion of the scans. These are quite big, and there can be moderately large offsets.
Simply looking at each offset in turn will be hideously expensive (dealt with in
Section 14.1.2).

3.4.2 Scoring an Overlap with a Cost Function

The sum of squared differences or SSD scores the similarity between the overlapping
parts of two separations R and B. Given an offset m,n, the SSD is

Creg(m,n;R,B) =
1

No

∑
overlap

(Rij − Gi−m,j−n)
2
.

Here overlap is the rectangle of pixel locations with meaningful values for both R
and G and No is the number of pixels in that rectangle. Notice that overlap and
so No change with m and n, so we must compare overlaps of different sizes for
different offsets. This means it is important that Creg is an average.

The SSD assumes that the images to be registered are very close to the same
when they are aligned. But the separations do not agree exactly when they overlap –
if they did, the image would be a monochrome image. It is useful to have alternative
cost functions that (a) will tend to be minimized or maximized when the images
are correctly registered and (b) change quite quickly when they are not.

Quite widely used alternatives are:

• The cosine distance, given by:

Ccos(m,n) =
∑

overlap

(Aij ∗ Bi−m,j−n)√∑
overlapA

2
ij

√∑
overlap B

2
i−m,j−n

.

Annoyingly, this cost function is largest when best, even though it’s called a
distance. Some authors subtract this distance from one (its largest value) to
fix this.

• The correlation coefficient, given by:

Ccorr(m,n) =
∑

overlap

(Aij − µA) ∗ (Bi−m,j−n − µB)√∑
overlapA

2
ij

√∑
overlap B

2
i−m,j−n

where µA =
1

NO

∑
overlap

Aij and

where µB =
1

NO

∑
overlap

Bij .

This is big for the best alignment. Notice how this corrects for the mean of
the overlap in each window.

Each is in the range −1 to 1, and neither scales with the size of the overlap neigh-
borhood. Terminology in this area is severely confused. The cosine distance isn’t
a distance; it is sometimes referred to as normalized correlation; and sometimes as
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Target SSD Cosine Correlation

FIGURE 3.11: Translation and an image matching cost function yield an elementary
detector. Model the object – here, the chicken – using an image window (leftmost
column), then translate this window to each location in the image (top) and com-
pute the cost of the overlap. If the underlying image looks a lot like the chicken, you
will get a good value of the cost function (other columns. For SSD, a good value is
small – and so dark – for others it is large – and so light. This elementary detector
has serious problems. In the second row, the chicken template is darker than the
original image, and so SSD matches are not particularly good. Cosine distance and
correlation are less affected. But chickens don’t stay in a fixed configuration, and
if the chicken moves third row, all scores fall off. Image credit: Figure shows my
photograph of jungle fowl in Singapore.

correlation. Several functions similar to correlation are referred to as correlation.
Figure 3.10 shows how these cost functions behave when trying to register the red
and blue separations of an image. These separations will be fairly similar, but not
exactly the same.

3.4.3 Elementary Object Detection, or Find the Chicken

Object detection is the problem of determining whether an object appears in an
image and where it is if it is there. There are a wide range of variants, explored in
much greater detail in Chapter 15.10; differences hinge on how one interprets the
word “object”, an alarmingly rich question.

A very simple object detector can be built out of the mosaic procedure. As-
sume A is an image which might contain an object, and B is a template – an example
image of the object to be detected. For every offset m,n where B lies inside A,
compute the cost function and store values in an array (the score array). Notice
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that if the values are small, then at that offset, the overlapping bits of B and A
“look like” one another. If they “look like” one another sufficiently (test the cost
function against a threshold), declare that the object is present. Figure 3.11 shows
what the arrays look like for a variety of cost functions.

This detector will tend to overcount objects rather significantly. Shifting a
template by one or two pixels will not tend to change the cost function by much.
This means if the cost function is below threshold at m,n, it is likely to be below
threshold at neighboring points in the score array, too. This could mean you find
many instances of the object nearly on top of one another. A straightforward
procedure called non-maximum suppression deals with this. Find the smallest below
threshold value in the score array. Record an object present at that location, then
suppress that location and all nearby values (nearby might mean, for example, all
values in a k × k window centered on the current best value in score array) by
setting all to a large value. Repeat this procedure until there are no more below
threshold values in the score array.

There are other good reasons this isn’t a good object detector. Look at Fig-
ure 3.11. The detector will only find chickens if they are in the same configuration
as the template, and on a grass background, and with the same lighting. Some of
this can be fixed with straightforward procedures. For some specialized applica-
tions, where very little computing is available, and where relatively few pixels lie
on the object, a detector built like this can be useful, but outside these applica-
tions different procedures are used. A large family of modern detectors are built on
this framework, with some crucial modifications: the cost function for evaluating
the match between an image window and the concept “chicken” is much more so-
phisticated than just comparing image pixels with template pixels and the search
procedure is more elaborate and more efficient (Chapter ??).

Remember this: Color separations can be registered by using transla-
tions and a cost function that checks how well they are registered. There are
numerous useful cost functions. This procedure can be adapted to produce
a simple detector which is not particularly reliable.

3.5 YOU SHOULD

3.5.1 remember these definitions:

Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Euclidean transformations . . . . . . . . . . . . . . . . . . . . . . . . 26

Uniform scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Non-uniform scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Affine transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Projective transformations . . . . . . . . . . . . . . . . . . . . . . . . 27
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3.5.2 remember these facts:

Each type of geometric transformation is important. . . . . . . . . . 27
A general recipe to transform a source image. . . . . . . . . . . . . . 35
Applications of geometric image transformations to registration and

detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Cameras: Homogeneous coordinates . . . . . . . . . . . . . . . . . . 378
Cameras: Lines on the Projective Plane . . . . . . . . . . . . . . . . 380
Cameras: A Line from Points . . . . . . . . . . . . . . . . . . . . . . 381
Cameras: Projective spaces . . . . . . . . . . . . . . . . . . . . . . . 382
Cameras: Planes in Projective 3D . . . . . . . . . . . . . . . . . . . 382
Cameras: A Line from Points . . . . . . . . . . . . . . . . . . . . . . 383
Cameras: Planes in Projective 3D . . . . . . . . . . . . . . . . . . . 384
Cameras: Planes in Projective 3D . . . . . . . . . . . . . . . . . . . 385
Cameras: Perspective Camera Matrix . . . . . . . . . . . . . . . . . 386
Cameras: Orthographic Camera Matrix . . . . . . . . . . . . . . . . 386
Cameras: A general perspective camera . . . . . . . . . . . . . . . . 389
Cameras: A general perspective camera . . . . . . . . . . . . . . . . 390
Cameras: Focal point of general camera . . . . . . . . . . . . . . . . 395
Cameras: Focal Point Constrains Extrinsics . . . . . . . . . . . . . . 395
Cameras: Models of lens distortions . . . . . . . . . . . . . . . . . . 399

3.5.3 remember these procedures:

Cropping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Pasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Translating an image . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Transforming an image . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Calibrating a Camera using 3D Reference Points . . . . . . . . . . . 396
Calibrating a Camera using 3D Reference Points: Start Point . . . . 397

3.5.4 be able to:

• Remember the form of translations, rotations, Euclidean transformations,
uniform and non-uniform scaling, affine transformations and projective trans-
formations.

• Explain the main difficulties in transforming an image, and how they are
resolved.

• Compel an API to produce the transformation result you want, and under-
stand the difference between options.

• Register color separations with translations.


