
C H A P T E R 34

Optic Flow

The stream of pictures that comes from a camera moving through a world of
stationary objects reveals a great deal about how the camera moves and the shape
of the world. A point that projects to x1 in frame 1 moves to x2 in frame 2. This
movement can be visualized by placing the flow vector v(x) = x2 − x1 at each
location in frame 1. Figure 34.1 shows some fields of flow vectors that might be
observed by a moving camera. These flow fields convey a great deal of information
about how the camera moved and what the shape of the world is. Estimating such
a flow field from a pair of images is referred to as an optic flow problem. There are
two big families of method for estimating optic flow: elementary methods, which
use various forms of geometric, physical and statistical reasoning to recover flow
fields; and regression methods, which follow the recipe of Chapter 22.6.

FIGURE 34.1: Flow offers simple, clear signals about how one is moving with respect
to the world. Look out of a bubble canopy on the nose of a small aircraft. If you
see the flow on the left, you are heading from left to right. If you see the flow in
the center, you are leaving the runway behind. If you see the flow on the right,
you are heading towards the near end of the runway. Various reflexes related to
flow patterns are found in a number of flying animals. For example, the flow on the
right – if large enough compared to the size of the object in the image – will often
trigger some collision management reflex.

34.1 OPTIC FLOW AS A CUE

Here is a useful trick, widely familiar to flying animals. Compute some measure
S of the size of an object in an image. You could use diameter, area, or a similar
measure. Move the camera, or eye and compute the time derivative of that measure,
St. The expression S/St is an estimate of time to contact which is unaffected by
camera calibration (Figure 34.2; exercises). If this number is less than some
threshold which has to do with your ability to accelerate, etc. you’re in trouble.
This trick is a simple manifestation of the information that optic flow has to offer
about the movement of an agent in the world.

442

Section 34.1 Optic Flow as a Cue 443

Frame 1 Frame 2 Flow field

FIGURE 34.2: Images 1 and 2 here offer an alarming warning of an impending
collision, which is captured in the flow field. In my experience, you can startle an
audience with carefully constructed slides showing scenes like these two. A darkened
room and a bright projector seem to help.

34.1.1 Simple Applications of Flow Estimates

Flow is informative. A moving agent that sees the two frames of Figure 34.2 is in
trouble. It is likely to hit the object in the center of frame 1 quite soon. The flow
field signals this trouble rather efficiently.

Now assume that the camera is calibrated, starts in the standard configura-
tion, and translates, so camera 2’s focal point is at p in camera 1’s frame. Equiva-
lently, the point at X in camera 1’s frame is at X − p in camera 2’s frame (check
you are sure about the minus sign). Now the flow in image 1 will be[

X1−p1

X3−p3
X2−p2

X3−p3

]
−

[
X1

X3
X2

X3

]

so the flow will be zero at the point [p1

p3
p2

p3

]

in image 1 however far away the corresponding 3D point is. This point is often
referred to as the focus of expansion of the flow. It is also the epipole (exercises
). If the flow points away from this point, the camera will hit the focus of expansion
if it keeps moving as it has been moving. Similarly, if the flow points toward this
point, the camera is escaping from that point in the scene. The three flow fields of
Figure 34.1 signal quite different things to a flying agent. These examples are built
around the epipole of the first frame, but flow conveys more information than an
epipole does.

You can recover 3D shape information from flow. Figure 34.3 shows a cali-
brated aerial camera translating parallel to the image plane while looking down on
a scene. For simplicity, the coordinate system is camera 1’s standard coordinate

444 Chapter 34 Optic Flow

XX

X

1
2

3

Flow field

FIGURE 34.3: Flow depends on depth. The camera (left) translates parallel to the
image plane along the small arrow. A point at the red location and will move a long
way in the image; a point at the blue location will move by a much smaller amount.
The text shows that the flow is proportional to the reciprocal of depth.

X
X

X

1
2

3

Flow field

FIGURE 34.4: A camera looks out of a train window at right angles to the direction
of travel (the small arrow) and views a ground plane. As the text shows, the flow
field looks like the inset – the flow at the horizon is zero, and flow grows linearly as
you move down from the horizon.

system. The flow at x = [x1, x2]
T
in the image plane is[
− p1

X3(x1,x2)

− p2

X3(x1,x2)

]

meaning that if you know the flow field and you know the camera translation, you
immediately know the depth to each point in the camera. Alternatively, recovering
the flow field is very like recovering the depth.

Another simple example of 3D shape information from flow is a calibrated
camera on a moving vehicle above a ground plane (Figure 34.4). Camera 1 is in
the standard camera coordinate system. The ground plane does not pass through
the focal point, so write bX2+ cX3−1 = 0 in the camera coordinate system for the
ground plane. The camera translates in the X1 direction by tx. image plane. One

Section 34.1 Optic Flow as a Cue 445

X
X

X

1
2

3

Flow field

FIGURE 34.5: A camera looks out of a train window at right angles to the direction
of travel (the small arrow) and views a ground plane with two trees on it. The flow
field on the ground plane looks like the inset of Figure 34.4, but the flow at the trees
is different. The nearby tree has a large flow, and the distant tree has a small flow.

example of this case is a train travelling on a ground plane, with a camera looking
out the window at right angles to the direction of travel. The ray from the focal
point through x = [x1, x2] is t [x1, x2, 1]. At the point where the ray pierces the
plane, X3 = 1/(bx2 + c). This means the flow is[

−tx(bx2 + c)
0

]
.

This flow is linear in image position. Notice the flow is zero when (bx2 + c) = 0,
which is also the horizon of the plane (check this exercises). The vector

p =
1√

a2 + b2

[
b
−a

]
is a unit vector perpendicular to the horizon. Choose a point h on the horizon,
and consider the ray in the image h + tp. The length of the flow vector increases
linearly in t – as you work your way down the line, the corresponding image point
is closer and the flow gets bigger (Figure 34.4). This illustrates a general point –
when the camera moves, closer points get longer flow vectors and further points get
shorter flow vectors.

34.1.2 Difficulties Estimating Flow

The train example can be used to show some difficulties in estimating flow. Fig-
ure 34.5 shows the flow field when there are two trees sticking out of the ground
plane. The flow inside the boundary of either tree is very different from that outside
the boundary. This should – and does – generate problems estimating the flow.

446 Chapter 34 Optic Flow

X
X

X

1
2

3

Image 1 Image 2

FIGURE 34.6: A camera looks out of a train window at right angles to the direction
of travel (the small arrow) and views a ground plane with two trees on it. Because
the nearby tree moves by more than the distant tree (as in Figure 34.5), for this
geometry the distant tree will disappear behind the nearby tree. Reversing the direc-
tion of camera movement will get an example where the distant tree reappears from
behind the nearby tree. In either case, there are pixels in one image that aren’t seen
in the other, which must create estimation problems.

You can’t estimate flow at a pixel that is there in one image but not in the
other image. Parts of the distant tree disappear behind the nearby tree in Figure ??,
which must create estimation problems – you can’t estimate flow at a pixel if the
piece of surface that produced the pixel isn’t in the second image. Similarly, parts
of the distant tree might reappear from behind the nearby tree.

Fast moving objects present particular difficulties. A fast moving object may
cover a pixel only for part of the time that the camera shutter is open, meaning that
the value reported by the pixel is some weighted average of the background color
and the object color. Some locations may see mostly background, and others will see
mostly object (Figure 34.7). The result is blur around the boundary of the object,

FIGURE 34.7: Fast moving objects produce heavily blurred images. These are five
consecutive frames of a sequence where I dropped a pen on my laptop. Notice in
the far left frame, my hand is in focus as is the pen. Dropping the pen involves a
fairly fast movement of my thumb, blurred in the left frame. As the pen accelerates
under gravity, it is increasingly blurred.

Section 34.2 Flow Estimation by Constraints 447

FIGURE 34.8: Each of the three flow vectors is a plausible explanation of the flow
on this moving bar, because you cannot tell how it has translated horizontally. This
effect is known as the aperture problem.

usually referred to as motion blur. This will affect the image gradient estimates and
the time derivative of intensity, and so tend to make the flow constraint unreliable.
Small, fast moving objects are particularly bad, because there may be few pixels
on the object and all could be affected by motion blur.

Figure 34.8 illustrates another basic problem estimating flow. Locally, the
flow at a straight edge is ambiguous, because you can’t tell whether there is any
flow along the edge. This isn’t just a property of edges. If the line segment in the
figure was an isophote (a curve of equal brightness points in the image) the same
problem would occur. You would not be able to tell locally if there was any flow
along the isophote. This problem is known as the aperture problem.

34.2 FLOW ESTIMATION BY CONSTRAINTS

You can tell where corners are, so you can tell where they have gone to, which
means flow at corners is unambiguous. This is the keystone of flow estimation.
Because there are some image locations where flow is quite accurately known, you
can estimate a flow field by “filling in” flow between these locations. The “filled
in” flow needs to meet constraints. This suggests an important early strategy for
estimating flow. Get the best estimate you can at each image location, then smooth
the estimates so that reliable estimates (at corners, for example) improve the quality
of unreliable estimates (along straight segments)

34.2.1 Constraints on Flow

At time t, a point V on an object projects to the point x in the image, producing
intensity I(x, t). The camera then moves by a small amount and at time t + δt a
new image is obtained. The point now projects to x + (δt)u, where u is the flow.
Then I(x+ (δt)u, t+ δt) is the same as I(x, t), so

I(x+ (δt)u, t+ δt)− I(x, t) = 0.

448 Chapter 34 Optic Flow

10 1 0.001

FIGURE 34.9:

If the flow and δt are small enough, a Taylor series is a good approximation, and
you find

I(x+ (δt)u, t+ δt) ≈ (I(x, t) + (δt)

[
(∇I)Tu+

∂I

∂t

]
so that for sufficiently small δt

(∇I)Tu+
∂I

∂t
= 0.

For convenience, I will call this the optical flow equation. At any pixel, it is easy
to compute estimates ∇I and ∂I

∂t , so this equation could yield one linear constraint
on the flow vector u. This isn’t enough to recover the flow vector exactly, but can
strongly constrain the flow.

The linearized constraint has some issues. The assumption I(x + (δt)u, t +
δt) − I(x, t) = 0 is not always true. The assumption boils down to assuming
that objects do not change appearance when they move. This very often, but not
always, true. There are a variety of reasons the amount of light reflected from the
surface of the object to the camera might change when the object moves by a small
amount. If the material of the object has a strong specular or glossy component,
the intensity might change because the angles to sources will change. Alternatively,
the object might move into a shadow volume. Finally, the illumination intensity
varies across space (for example, as a result of interreflections). Experience teaches
that the assumption is quite reliable, but not exact. Even if the assumption holds,
the movement might be so large that linearizing the expression is reckless. This
issue is a particular nuisance for small, fast moving objects. It can be managed by
coarse-to-fine search (Section 22.6).

34.2.2 Estimating Smoothed Flow

Now think about the flow field around a blob in the image. Flow at a point on the
boundary of the blob should be quite like flow at points nearby, otherwise the blob
is disintegrating. A useful smoothing constraint is to assume that the gradient of
each component of flow is small. Furthermore, the constraint is only true if the
estimates ∇I and ∂I

∂t are exact. This suggests recovering flow by minimizing a
weighted sum of the gradient magnitudes of the flow and the extent to which the
flow violates constraints.

Section 34.2 Flow Estimation by Constraints 449

10 0.1 0.000001

FIGURE 34.10: Horn-Schunk estimates of flow for a pair of images of my laptop,
with a small time interval. The Taylor series approximation is reliable. When the
smoothing is large, the flow field is heavily smoothed and not particularly informa-
tive. As the smoothing reduces, the flow field is more variable. When there is very
low smoothing, the flow field becomes completely unreliable.

10 0.1 0.000001

FIGURE 34.11: Horn-Schunk estimates of flow for a pair of images of my laptop,
with a moderate time interval. The Taylor series approximation is not reliable.
When the smoothing is large, all pixels have about the same flow; as the smoothing
reduces, the flow field is more variable but not particularly good.

You can see this as an instance of the master recipe for denoising, but now
applied to flow. Write u and v for vectors giving the value of the flow at each pixel.
The recipe seeks an estimated flow field that is (a) close to meeting the constraints
and (b) like a real flow field. Write

C(u,v) =
[the extent to which u, v is consistent with image data]+

[the extent to which u, v is smooth]

= [data] + [penalty]

and choose u, v that minimize this cost function. Notice you can think about each
component of flow as an image (one value per pixel).

Write Dx and Dy for matrices that compute a smoothed gradient from a
vector representing a flow component or the image (rearrange the finite differences
of Section 5.1.2, or the derivative of gaussians of Section 5.2.2, exercises). Write
I1 for image 1 expressed as a vector, Ix for DxI1, Iy for DyI1, It for I2 − I1, and
diag (w) for the operator that constructs a matrix with w on the diagonal. Then
choose the flow field that minimizes

[diag (Ix)u+ diag (Iy)v + It]
T
[diag (Ix)u+ diag (Iy)v + It] + [data]

α
[
uT (DT

xDx +DT
y Dy)uv

T (DT
xDx +DT

y Dy)v
]

[penalty] .

Here α is a parameter that controls the degree of smoothing. Notice that large α
leads to a very smooth flow field which may not meet the constraints, and small α

450 Chapter 34 Optic Flow

will produce a less smooth field that is more likely to meet the constraint. Solving
this flow equation is straightforward (exercises).

The method I have described is known as the Horn-Schunk method, and was
originally described in []. It will be helpful to write the data term as u

v
1

T  diag (Ix)diag (Ix) diag (Ix)diag (Iy) diag (Ix)diag ((It))
diag (Iy)diag (Ix) diag (Iy)diag (Iy) diag (Iy)diag ((It))
diag (Ix)diag ((It)) diag (Iy)diag ((It)) diag ((It))diag ((It))

 u
v
1

T

.

34.2.3 Pooled Estimates

Assume that the optical flow equation applies. You have one constraint on flow at
every pixel, so you can’t recover the flow at a given pixel. But if you assume that
all pixels in a N × N window have the same flow, you might be able to. Write
(∇I)ij for the image gradient at the i, j’th pixel in the window, It,ij for the time
derivative at that pixel, and find

[
(∇I)T11

. . . (∇I)TNN

] [
u
v

]
= −

 It,00
. . .
It,NN

 .
Now write dij =

[
(∇I)Tij , It,ij

]T
. To obtain a least squares solution, you would

choose the (u, v) that minimizes

[u, v, 1]
T
∑
ij

[
dijd

T
ij

]
[u, v, 1] .

Now imagine doing this at every pixel. This requires a minor suspension of disbelief.
If you assume that the flow is constant in an N × N window, and estimate it in
overlapping windows, it must be the same in every window. But the solution
minimizes a cost function rather than exactly satisfying an equation, so ignore this
concern. Doing so would involve some minor surgery on the data term in the Horn-
Schunk method. Compute the average of each derivative in an N × N window
around each pixel, making the window smaller as required so you can obtain an
average at the boundaries and corners. Write Ix for the average of Ix obtained in
this way, and so on. Now solve u

v
1

T  diag
(
Ix
)
diag

(
Ix
)

diag
(
Ix
)
diag

(
Iy
)

diag
(
Ix
)
diag

(
(It)
)

diag
(
Iy
)
diag

(
Ix
)

diag
(
Iy
)
diag

(
Iy
)

diag
(
Iy
)
diag

(
(It)
)

diag
(
Ix
)
diag

(
(It)
)

diag
(
Iy
)
diag

(
(It)
)

diag
(
(It)
)
diag

(
(It)
)
 u

v
1

 + [data term]

α
[
uT (DT

xDx +DT
y Dy)uv

T (DT
xDx +DT

y Dy)v
]

[smoothness] .

34.3 FLOW ESTIMATION WITH PARAMETRIC MODELS

In some useful cases, it is straightforward to write out the flow as a function of
(say) camera motion. This gives a parametric flow field. You then solve for the
parameters using the optical flow equation or other procedures. The advantage of

Section 34.3 Flow Estimation with Parametric Models 451

this procedure is that it manages the ambiguity in the optical flow equation. The
procedure is particularly useful for objects moving parallel to the ground, or high
above the ground. Model the ground as a plane, and you can get a fair estimate of
flow.

34.3.1 Parametric Flow Examples: Looking at a Ground Plane

A calibrated camera looks at a ground plane from a fixed height above it. The
camera translates parallel to the ground plane, and the image plane is perpendicular
to the ground plane. Set up a coordinate system so that, at time 1, the camera is
in the standard coordinate system for a perspective camera. The ground plane will
be Y = c for some constant. The camera translates parallel to the ground plane,
so by (tx, 0, tz). The time interval is small. A point at (x, y)T in the first image
plane is at  xc

y

c
c
y


in 3D. This means the flow induced by the translation will be x−y tx

c

1−y tz
c

− x
y

1−y tz
c

− y


Here I have grouped the variables quite deliberately to show an ambiguity. You can
estimate two parameters, tx

c and
ty
c . This is an ambiguity in the geometry, but not

in the flow. A large movement by a camera high above the ground plane results
in the same flow as a small movement by a camera closer to the plane. Insert this
flow into the optical flow equation, cross multiply and find

∂I

∂x

[
x− y tx

c
− x(1− tz

c
)

]
+
∂I

∂y

[
y2
tz
c

]
+
∂I

∂t

[
1− y tz

c

]
= 0

And you could solve this using least squares for the two parameters.

34.3.2 Parametric Flow Examples: Looking at a Ground Plane with Relief

Now the calibrated camera looks directly down at a ground plane from a fixed
height above it. The camera translates parallel to the ground plane, and the image
plane is perpendicular to the ground plane. The ground plane will be Z = c for
some constant. But the ground isn’t really a plane. Houses, trees, people and such
stick up out of the ground, and generate variations in the flow field, so write the
ground as Z = c + δZ where δZ is small compared to c and represents this relief.
Choose the ground plane so that the relief is always non-negative.

Now set up a coordinate system so that, at time 1, the camera is in the stan-
dard coordinate system for a perspective camera. The camera translates parallel
to the ground plane, so by (tx, ty, 0). The time interval is small. A Taylor series
yields [

x
y

]
=

[X
c+δZ
Y

c+δZ

]
≈
[

X
c (1−

δZ
c)

Y
c (1−

δZ
c)

]

452 Chapter 34 Optic Flow

so that the flow is [−tx
c (1− δZ

c)
−ty
c (1− δZ

c)

]
. Again I have grouped the variables quite deliberately to show an ambiguity. You
can estimate two parameters, tx

c and
ty
c and a relative height field δZ

c . This is an
ambiguity in the geometry, but not in the flow.

A straightforward strategy to recover flow from a pair of images uses alter-
nating reestimation. Start by assuming the relief is 0. Now iterate:

• for fixed relief, use least squares on the optical flow equation to estimate tx
c

and
ty
c ;

• for fixed tx
c and

ty
c , use least squares on the optical flow equation to estimate

relief.

If the relief or the camera translation are large compared to c, either the optical
flow equation or the Taylor series for the flow will become unreliable. Multiscale
estimates help in this case.

34.3.3 Multiple Objects on a Plane

A calibrated camera translates in the x direction at a fixed height above a ground
plane. The ground plane is at Y = c in camera coordinates, so the image plane
is perpendicular to the ground plane. A collection of N flat objects stick up out
of the ground plane at fixed depths (Figure ??; the i’th object is at Z = di). For
this setup, the flow in the y direction in the image plane is always zero. Check
that, if the pixel at (x, y)T sees the ground plane, the z coordinate is c/y. The x
component of flow at a pixel takes one of N + 1 values

− txc
y if the pixel sees the ground plane

− tx
c1

if the pixel sees object 1

.
− tx

cN
if the pixel sees object N

Assuming you don’t know the ground plane constant, the translation, or the
depth of any object, you still have only N + 1 constants to estimate. Estimating
these constants is tightly intertwined with segmenting the image into objects and
ground plane.

If the flow at pixel (x, y)T is (u, v), then I2(x+u, y+v) should be very similar
to I1(x, y). The term

(I1(x+ u, y + v)− I2(x, y))2

is sometimes referred to as photometric error. This error can be used to estimate
simple flow rather reliably.

Here is a simple estimation algorithm, which is quite strongly analogous to
k-means. Assume that, for every pixel, you know which of the N +1 cases applies;
that is, whether it is background, or one of the objects. Now take all pixels that
lie on object i, and search for the u such that∑

(x,y)∈pixels on i

(I2(x− u, y)− I1(x, y))2

Section 34.3 Flow Estimation with Parametric Models 453

is minimized. Then (−u, 0) is the flow for that object. For the background, search
for the c such that ∑

(x,y)∈background pixels

(I2(x− c/y, y)− I1(x, y))2

is minimized; the flow at the background is the (−c/y, 0). Now assume that you
know the flow for each object and the background. Then assign each pixel to the
segment that has the flow that produces the lowest photometric error. The choices
are 

(I2(x− c/y, y)− I1(x, y))2 if the pixel is background
(I2(x− c1, y)− I1(x, y))2 if the pixel is on object 1

.
(I2(x− cN , y)− I1(x, y))2 if the pixel is on object N

.

34.3.4 Mixtures of More Complex Parametric Flow Models

The objects on a plane example is a simple example of a powerful procedure. For
the general form, assume the flow field consists of a set of regions. In each region,
the flow follows a parametric model with a manageable number of parameters. In
the objects on a plane example, there was one parameter per segment, but you
could have more. A flow model where flow at the pixel at (x, y)T is given by

[
u(x, y)
v(x, y)

]
=M



1
x
y

1/x
1/y
x2

xy
y2


covers a number of useful cases (Figure ??). Estimating a flow field of this form can
be easier than estimating a general flow field, because there are very few constants
to estimate. Further, the flow estimate is very tightly linked to a segmentation
of the image that is interesting – pixels are grouped together in a segment if they
move in similar ways.

This model has properties like that of the previous section. If you know which
flow model a pixel belongs to, you can estimate the parameters for that flow model
by minimizing photometric error. Further, if you know the parameters of the flow
models, you can tell which segment a pixel belongs to by checking which of the flow
models minimizes the photometric error. Using the outline sketched in the previous
section should seem reasonable to you.

The algorithm has one weakness. Each pixel is assigned to the segment whose
flow yields the best photometric error. If two segments have about the same pho-
tometric error, this strategy could lose significant amounts of information. There
is little justification for one segment’s flow estimate getting all the constraint from
that pixel, and the other segment’s flow estimate getting none.

454 Chapter 34 Optic Flow

FIGURE 34.12:

Improvements can be obtained with soft assignment, where each pixel can be
assigned to more than one segment using a weight (the original strategy is then
called hard assignment). To avoid overcounting, the weights must sum to one. The
photometric error at a pixel yields a natural set of soft weights. Assume there are N
different parametric models (equivalently, segments). Write θi for the parameters
of the i’th segment, f(x; i, θi) for the flow predicted by the i’th model at x in the

first frame and E(x; i, θi) = (I2(x+ f(x; i, θi))− I1(x))2 for the photometric error
resulting from using the i’th segment to predict flow x. Then a natural set of
weights is

wi(x) =
e

−E(x;i,θi)

2σ2∑
u e

−E(x;u,θu)

2σ2

.

Here σ is a scale that you choose. Too small a value of σ and the soft assignment
is largely a hard assignment because one weight is much larger than all the others.
Too large a value of σ and the soft assignment strategy oversmoothes the estimated
flow field.

Assume a moving camera in a stationary world. The flow vector attached to
a point that is far away from the cameras will be smaller than that attached to a
point that is close to the cameras (Figure 34.12).

34.4 INTEREST POINTS

34.4.1 Scattered Reliable Flow Estimates

Assume that the optical flow equation applies. You have one constraint on flow at
every pixel, so you can’t recover the flow at a given pixel. But if you assume that
all pixels in a N × N window have the same flow, you might be able to. Write
(∇I)ij for the image gradient at the i, j’th pixel in the window, It,ij for the time
derivative at that pixel, and find

[
(∇I)T11

. . . (∇I)TNN

] [
u
v

]
= −

 It,00
. . .
It,NN

 .
A least squares solution is obtained by solving∑

ij

(∇I)ij(∇I)Tij

[u
v

]
=M

[
u
v

]
=

−∑
ij

It,ij(∇I)ij

 .
You should notice an old friend from Section 22.6. The matrix M is the same as
the matrix used to build a corner detector. This is not accidental. If this matrix
has large eigenvalues, the least squares solution will be reliable, but if one or both
eigenvalues are small, it will not. Equivalently, because you can tell where a corner
is, you can tell where it has gone to.

Section 34.5 Improving Flow Estimates 455

Now pass over the image, and at each window computeM and check its eigen-
values. You might use the Harris criterion, but this isn’t compulsory. Locations
where they’re both big are likely to form blobs, so use non-maximum suppression
as in Section 22.6. You now have a set of points where you can rely on the flow
estimate, so compute the estimate at these points. You now have flow estimates at
scattered points in the image.

34.5 IMPROVING FLOW ESTIMATES

34.5.1 Improving Estimates with Robust Methods

34.5.2 Improving Estimates with Coarse-to-Fine Search

here?

34.6 REGRESSION METHODS FOR OPTIC FLOW

34.7 SMALL FAST OBJECTS AND FLOW

