
C H A P T E R 33

Pairs of Cameras

33.1 GEOMETRY

Place two perspective cameras in 3D, and construct the line segment joining their
focal points. This line segment is known as the baseline. Now extend the baseline
to a line. This line intersects each image plane in an important point, known as
the epipole for that image plane in that configuration of cameras (Figure 33.1).

If the cameras view some point X into 3D, camera 1 sees that point at x1 and
camera 2 sees that point at x2. The points X, f1 and f2 define a plane in 3D. This
plane intersects the image plane of camera 1 in a line I shall call l1(X). Similarly, it
intersects camera 2 in an line l2(X). These lines must pass through their respective
epipoles (Figure 33.2), and are known as epipolar lines.

As section 22.6 sketched, knowing something about the relative geometry
of the cameras and where the point appears in each camera will reveal the 3D
coordinates of the point. If you see a point in the first camera at x1, you will need
to find x2 to produce a 3D reconstruction. But not any point in camera 2 could
correspond to x1. If you know enough about relative camera configuration, you can
construct the epipolar line l2 in the second image, and x2 must lie on this line.

The epipoles contain further valuable information. Introduce a second point
Y that doesn’t lie on the plane through X, f1 and f2. This yields a second plane,
which produces its own epipolar lines (Figure 33.3). The baseline defines a whole
family of planes that contain the baseline (Figure 33.4; this is often referred to as
a star of planes).

The epipole in a single image reveals a great deal of information about the
camera has moved. For intuition, construct some of the lines through the epipole,
then compare to Figure 33.4. Figure 33.5 shows some examples.

33.1.1 The Fundamental Matrix

As Figure ?? shows, a point in 3D selects a plane from the family of planes through
both focal points, and this plane intersects each image plane in epipolar lines. The
image of that 3D point in camera 1 selects the same epipolar plane, so the figure
illustrates a mapping from points in camera 1 to lines through the epipole in camera
2, which works like this: Select a point in camera 1; construct the plane through
this point and the two focal points; now intersect that plane with camera 2’s image
plane; and you have the corresponding epipolar line.

The point x1 in Figure ?? is a point in 3D (though lying on the camera
plane) and can be written with four homogenous coordinates. Write P for the 3D
coordinates of an arbitrary point on the plane through x1, f1 and f2. Then

determinant([x1, f1, f2,P]) = 0
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FIGURE 33.1: Epipoles are formed by the line connecting the focal points (f1 and f2)
of two perspective cameras. This line intersects camera 1’s image plane in e1 (the
epipole in the first image), and camera 2’s image plane in e2 (the epipole in the
second image). As long as the two focal points are distinct, the epipoles are properly
defined, although they may appear far outside the image (or even at infinity).

(the four points are coplanar, exercises ). You could write this plane as pP1 +
qP2 + rP3 + sP4 = 0, where p, q, r and s are linear functions of x1. The line in
camera 2’s image plane is obtained by intersecting this plane with a fixed plane.
This means in turn that the coefficients of this line are also linear functions of x1.
Now notice that you could write x1 with only three homogenous coordinates – the
fourth follows from the fact that this point lies on a fixed, known plane. From
these observations, it follows that there is a matrix F with the property that the
coefficients of the epipolar line corresponding to x1 are given by xT

1 F . This matrix
is known as the fundamental matrix. Here xT

1 Fx′
2 = 0, because x′

2 lies on this line.
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FIGURE 33.2: The cameras are now viewing a point X in 3D, which projects to x1

in camera 1 and x2 in camera 2. The three points f1, f2 and X define a plane in
3D. This plane intersects camera 1’s image plane in a line (l1 in the figure) that
passes through e1 and camera 2’s image plane in a line (l2 in the figure) that passes
through e2.

Remember this: For any pair of cameras which do not share a focal
point, there is a fundamental matrix F with the property that for any pair
x1, x

′
2, where x1 is the image of a 3D point in the first camera and x′

2 is
the image of that point in the second camera,

xT
1 Fx′

2 = 0

33.1.2 Properties of the Fundamental Matrix

There isn’t any particular reason the cameras are labelled 1 and 2 – you could
swap the labels, without affecting the geometry. Notice that xT

1 Fx′
2 = 0 implies

that x′
2
TFTx1 = 0. This means that, if you swap the labels, you transpose the

fundamental matrix. In turn, a procedure that finds something in camera 2 using
data from camera 1 can also be used to find something in camera 1 using data from
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FIGURE 33.3: The cameras now view two points X and Y in 3D. Each of these
points defines a plane when taken together with the two focal points. Depending
on where Y is, the two planes may be different (as in this figure). However, they
both intersect each camera’s image plane in lines, and these lines pass through the
epipoles.

camera 2.

The fundamental matrix for a pair of cameras reveals both epipoles and epipo-
lar lines for both cameras. Choose some point x1 in the first camera. Now for every
point x′ in camera 2 that could match x1,

xT
1 Fx′ =

(
xT
1 F
)
x′ = 0

and you can think of FTx1 as a vector containing the coefficients of a line. This
line is the epipolar line corresponding to x1. You can think of the fundamental
matrix as a map from points in one camera to lines in the other camera.
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FIGURE 33.4: There is a family of planes passing through the baseline. Each plane
intersects an image plane in a line through the epipole. Alternatively, you can see
the epipole in each image as defining a family of lines that pass through the epipole.

Procedure: 33.1 Obtaining an epipolar line from a fundamental matrix

The epipolar line in camera 2 corresponding to x1 in camera 1 consists
of the set of points x′ in camera 2 which satisfy the equation(

xT
1 F
)
x′ = 0

and the coefficients of the line are(
FTx1

)
.

It follows that the coefficients of the epipolar line in camera 1 corre-
sponding to x′

2 in camera 2 are

(Fx′
2) .
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FIGURE 33.5: The epipoles reveal information about how cameras have moved. This
is most easily seen by thinking about the epipolar lines. These three examples sketch
the underlying intuition, and should be looked at together with Figure 33.4. On the
left, the camera has translated parallel to the image plane; center, the camera has
moved perpendicular to the image plane; and right, the camera has translated par-
allel to the image plane then rotated slightly. You should check each case carefully.

Every such line passes through the epipole, so the epipole must be the point
in camera 2, e′2, such that for any choice of x1,

(
xT
1 F
)
e′2 = 0. The only way to

achieve this is if
Fe′2 = 0

so F cannot have full rank.

Procedure: 33.2 Obtaining epipoles from a fundamental matrix

The epipole in camera 2 is the point e′2 such that

Fe′2 = 0.

It follows that the epipole in camera 1 is the point e1 such that

FTe1 = 0.

In fact, F must have rank 2. The rank can’t be three, because there are
epipoles. The fundamental matrix is a map from points in one camera to lines in
the other. If the rank were 1, the fundamental matrix would map any point in one
camera to the same line in the other camera (exercises ). If the rank were 0,
the fundamental matrix would map any point in one camera to a zero vector (this
happens if the camera is not translated, a rather special case, Section ??). Rank 2
is the only available alternative.

Remember this: The fundamental matrix F must have rank 2 unless
the two cameras share a focal point, when it consists of zeros.



Section 33.1 Geometry 431

Since

xT
1 Fx′

2 = 0 = xT
1 (sF)x′

2

for any s ̸= 0, the fundamental matrix is only really meaningful up to scale.

Remember this: The fundamental matrix F is only meaningful up
to scale. You should think of this matrix as a point in 8 dimensional space
represented with 9 homogenous coordinates.

33.1.3 Estimating the Fundamental Matrix

The fundamental matrix can be estimated from point correspondences. Assume
two cameras view a set of points Xi in 3D. Write x1,i for the image of the i’th
point in camera 1 and x′

2,i for the image of the i’th point in camera 2. Each pair
yields one equation that constrains the fundamental matrix, that is

xT
1,iFx′

2,i = 0

(remember – you know the coordinates of the point in each camera, so the unknowns
here are the elements of F). You get one equation for each pair of points, and each
equation is homogenous, so eight pairs of points yield an estimate of F . This
estimate is up to scale, but the fundamental matrix is only meaningful up to scale.
There is a useful improvement available. The scale of the image coordinate system
can have a real effect on the estimate of F , and a more accurate estimate of F
can be obtained by scaling the image so that the largest coordinate direction runs
from 0 to 1 (rather than, say, 0 to 768). The procedure is known as the 8 point
algorithm.

Procedure: 33.3 The 8 point algorithm for estimating the fundamental
matrix

Scale the image coordinate system for camera 1 and camera 2 so that
the largest coordinate direction runs from 0 to 1. Find 8 pairs of corre-
sponding points x1,i and x′

2,i. Now solve the system of 8 homogenous
equations given by

xT
1,iFx′

2,i = 0

in F .

The eight point algorithm does not impose the constraint the fundamental
matrix has rank 2. This constraint is cubic in the coefficients of F (the constraint is
det(F) = 0). Exploiting the constraint makes it possible to estimate a fundamental



432 Chapter 33 Pairs of Cameras

matrix with seven corresponding pairs, if you are willing to form the roots of a
cubic. This isn’t for everyone; details in [].

The eight point algorithm requires 8 corresponding pairs. The natural source
of these pairs is RANSAC, but notice that this is a large number of pairs, so you
really do not want to just select from all pairs of points. Instead, find and describe
interest points using (for example) the methods of Chapter ??, and use only pairs
whose descriptors match well. Again, this isn’t for everyone; details in [].

33.2 COORDINATE GEOMETRY

The drawings of the previous section illustrate geometric facts that do not depend
on coordinates, but usually you need to use two images to reconstruct a point in
3D. This problem has to be worked in coordinates. Assume each camera has known
intrinsics. This means you can calibrate each camera so that the coordinates the
camera reports are the coordinates of a point in the camera’s coordinate system
and each has focal length 1.

33.2.1 Triangulating a Point in 3D from Two Images

Now choose a left-handed coordinate system so that the first camera has focal point
at the origin, looks down the z-axis, and has image plane at z = 1, as in Section 31.2.
To get the second camera, rotate the first camera by RT , then translate it by t, so
that f2 = t. Notice that this means that a point at X = [X1, X2, X3]

T
in the first

camera’s coordinate system appears at X′ = R(X− t) (if the camera rotates left,
then all the points in the image frame move right).

The first camera has focal point at the origin, so v1 = X is the vector from
f1 to X. The vector from f2 to X is v2 = X − t in the first camera’s coordinate
system. I will write vectors in the second camera’s coordinate system with a prime,
and I will work this problem in affine coordinates. Write

R =

 rT1
rT2
rT3


You see the point in the first camera at

m =

 m1

m2

1

 =

 X1

X3
X2

X3

1


and in the second camera at

m′ =

 m′
1

m′
2

1

 =


rT1 (X−t)

rT3 (X−t)
rT2 (X−t)

rT3 (X−t)

1

 .
For the moment, assume that m, m′, the rotation and the translation are all

known exactly. Then
X3m = X
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and the only unknown is X3. You can write two linear equations in this unknown,
which are

m′
1(r

T
3 (X3m− t))− (rT1 (X3m− t)) = 0

m′
2(r

T
3 (X3m− t))− (rT2 (X3m− t)) = 0.

These equations have to be consistent, which means that there is a relationship
between m and m′ that depends on R and t. The relationship expresses the
mapping from points to lines of the previous section. It could be obtained by some
aggressive linear algebra, but is better constructed directly, which I do in the next
section.

A warning: it is not a good idea to estimate X3 using the equations above,
because you will never actually know m and m′ exactly. They are useful only to
establish that you can recover X3.

33.2.2 Triangulation by Minimization

Now assume you know R and t, and have estimated locations m and m′ for a pair
of points that correspond. These estimates may not be exact – for example, they
might come from an interest point matcher – but any error is small. You must
recover the point in 3D.

The first camera has camera matrix Cp. The second camera has camera matrix

[R| −Rt]

(recall notation from Section 22.6, and check that this camera has focal point at t).
Now write X = [X1, X2, X3] for a point in 3D in affine coordinates. The residual
vector in camera 1 is the vector from the projection of X to m, so

e1(X) =

[
X1

X3
−m1

X2

X3
−m2

]
.

The residual vector in camera 2 is the vector from the projection of X to m, so

e2(X) =

 rT1 (X−t)

rT3 (X−t)
−m′

1

rT2 (X−t)

rT3 (X−t)
−m′

2

 .
The reprojection error Er(X) for a point X in 3D is the sum of distances in each
camera from the projections of the point to the measured locations, so

Er(X) = eT1 e1 + eT2 e2.

It is natural to obtain X by simply minimizing the reprojection error.
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Procedure: 33.4 Triangulating by minimizing reprojection error

Start with a point c viewed in a calibrated camera and a corresponding
point c′ in a second calibrated camera. The rotation R and translation
t from the first to the second camera are known. The first camera’s
intrinsic matrix is K1, etc. Write

m = K−1
1 c and m′ = K−1

2 c′

for the measurements in a standard camera. Now compute the repro-
jection error Er(X) for a variable 3D point X and minimize

Er(X)

as a function of X. Use a quasi-newton method for minimization.

33.2.3 The Essential Matrix

In the second camera’s coordinate system, v′
2 = RTv2 = RT (X − t). The three

vectors v1, v2 and t must be coplanar. This means that

[t× v1]
T
v2 = 0

A convenient trick from linear algebra helps here. For a vector a = [a1, a2, a3]
T ,

write

[a]X =

 0 −a3 a2
a3 0 −a1
−a2 a1 0


and notice a× b = [a]Xb. This means that

[[t]Xv1]
T
v2 = 0

= vT
1 [t]X

T
v2

= vT
1 [t]X

TRv′
2

Use homogenous coordinates to express the point measured in camera 1 as x1, and
notice there must be some constant s ̸= 0 such that x1 = sv1. Similarly, use
homogenous coordinates to express the point measured in camera 2 as x′

2. Again,
there must be some constant t ̸= 0 such that x′

2 = tv′
2. Because the equation above

is homogenous,

xT
1 [t]X

TRx′
2 = 0

xT
1 Ex′

2 = 0

where E is known as the essential matrix.
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33.2.4 Properties of the Essential Matrix

The essential matrix can be obtained up to scale from the fundamental matrix if
you know the intrinsic calibration of the two cameras. The calibration matrices are
written K1 and K2, and must have full rank. Then you can estimate the essential
matrix as

K−T
1 FK

−1
2 .

Since the fundamental matrix is meaningful only up to scale, this estimate is only
up to scale as well. This means that, if you apply the constructions above for the
fundamental matrix to the essential matrix, they yield epipolar lines or epipoles in
the world coordinate system of the relevant camera. The essential matrix must have
rank 2 because the fundamental matrix does.

Recall that SVD(M) produces three matrices UM, ΣM and VM, such that
M = UMΣMVT

M where UM and VM are orthonormal and ΣM is diagonal. The
terms on the diagonal of Σ are often referred to as the singular values ofM.

Recall

[t]Xu = t× u.

This means

[t]Xt = 0 and tT [t]X = [t]X
T
t = −[t]Xt = 0

so [t]X must have one singular value that is zero. The other two singular values
are both ||t ||, because

||t× u || ≤ ||t ||||u ||

(with equality when tTu = 0) and because there is a two-dimensional space of u
that achieve equality. Because the essential matrix is known only up to scale, it
is enough to require its singular values are 1, 1, and 0. Assume you are presented
with an estimate of the essential matrix up to scale. This estimate can be corrected
to be more like an essential matrix as below.

Procedure: 33.5 Correcting an estimate of an essential matrix

Given M – an estimate of an essential matrix – compute the SVD to
obtain U , Σ and V. Compute Σe = diag(1, 1, 0) and

Ê = UΣeVT

which is the closest matrix toM that has appropriate singular values.

33.3 VISUAL ODOMETRY: EXPLOITING AN ESSENTIAL MATRIX

Remarkably, an essential matrix reveals the transformation between the two cam-
eras up to scale. Recovering this information involves slightly complicated geome-
try. The result – given two images from cameras with known calibration, you can
determine the relations between the cameras – is hugely useful.
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33.3.1 Recovering Translation up to Scale

Assume you have two images obtained from two cameras whose calibration matri-
ces you know. Further, you have the fundamental matrix up to scale, using the
procedures of Section ??. You can recover the essential matrix up to scale with-
out difficulty, then correct it as in Procedure 33.5. From this, you can recover
information about how the cameras moved from the essential matrix.

Recall for t the translation between cameras and R the rotation, the essential
matrix Ê has the property

sÊ = [t]XR

(for any s ̸= 0). Further tT [t]X = 0, so you can immediately recover the translation
t up to scale by finding the unit vector u such that

uT Ê = 0T .

These vector is occasionally referred to as the left null vector of the essential matrix.
There are two unit left null vectors, which I write u+ and u− = −u+. Each is an
estimate of the translation, so write t̂+ and t̂− for the estimates. There are two
distinct estimates of the translation.

33.3.2 Recovering the Rotation

The right null vector is the vector v such that

Êv = 0.

Again, there are two unit right null vectors, which I write v+ and v− = −v+.
Each is an estimate of RT t, which I write s; for the two estimates, write ŝ+ and
ŝ−. This leads to an important ambiguity in the rotation estimate. Assume, for
the moment, you choose the translation estimate t̂+. Then there are at least two
distinct rotation estimates available. One estimate is obtained from ŝ+ = Rat̂+
and the other from ŝ− = Rbt̂+.

Obtaining these rotation estimates takes some more work. Because Ê has the
right singular values and t̂ is the left null vector,

Ê =
[
t̂
]
X
R

for an unknown R. Now write

B̂ =
[
t̂
]
X

T Ê =
[
t̂
]
X

T [
t̂
]
X
R

for a known matrix (you can multiply the estimates). SVD this matrix to get UB ,
Σ and VB , and SVD [t]X to get UT , ΣT and VT . Now

B̂ = UBΣVT
B

= VTΣ2
TVR

T

and Σ2
T = ΣT = Σ which implies that you can estimate R = UBVT

B . But Σ =
diag(1, 1, 0) and this zero singular value creates some important ambiguities. First,
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notice that the last column of UB must be parallel to t̂ to ensure that B̂ has the
correct left null vector. Similarly, the last column of VB must be parallel to ŝ to
ensure that B̂ has the correct right null vector. There are now four possible options
for the pairs (UB ,VB), obtained by choosing one of t̂+ or t̂− and one of ŝ+ or ŝ−.
Write ++,+−,−+,−− for these options. Write UB,+ =

[
α1, α2, t̂+

]
and VB,+ =

[β1, β2, ŝ+], etc. Notice that UB,+VT
B,+ = UB,−VT

B,− and UB,−VT
B,+ = UB,+VT

B,−,
so there are two rotation options. Construct the two matrices

W+ = α1β
T
1 + α2β

T
2 − t̂ŝT

and

W− = −α1β
T
1 − α2β

T
2 − t̂ŝT .

and write

R̂+ =W+(det(W+))

R̂− =W−(det(W−)).

These are (a) true rotations, because their determinants are positive and (b) esti-
mates of the rotation. The essential matrix yields four possible camera configura-
tions:

(t̂+, R̂+), (t̂−, R̂+), (t̂+, R̂−), (t̂−, R̂−).

Procedure: 33.6 Estimating camera rotation and translation from an
essential matrix

Given E , an essential matrix, construct t̂, the unit left null vector, which

is an estimate of the translation up to scale. Write B̂ =
[
t̂
]
X

T Ê , and
compute the SVD to obtain UB , Σ and VB . Write UB = [α1, α2, t] and
VB = [β1, β2, s] (where s is the unit right null vector). Construct the
two matrices

W+ = α1β
T
1 + α2β

T
2 − t̂ŝT

and
W− = −α1β

T
1 − α2β

T
2 − t̂ŝT .

and write
R̂+ =W+(det(W+))

R̂− =W−(det(W−)).

The essential matrix yields four possible camera configurations:

(t̂, R̂+), (−t̂−, R̂+), (t̂, R̂−), (−t̂−, R̂−).

I have put the process in a box, above. While it appears to yield four solutions,
only one is consistent with real imaging geometry.
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33.3.3 Disambiguating Reconstructions

The relations between R̂+ and R̂− are revealing. Compute

R̂−R̂T
+ = −α1α

T
1 − α2α

T
2 + t̂t̂T

and this maps t to t, α1 to −α1 and α2 to −α2 – it is a rotation by 1800 around
the axis t̂. This makes it possible to visualize the four reconstructions. Figure 33.6
shows the four ambiguous reconstructions of camera 2 around camera 1. I have
visualized the result of triangulating one point in each of the four reconstructions.
In this case, the point is at the center of camera 1 and at the center of camera
2. Each of the camera reconstructions has the same essential matrix, so that if
a point in one reconstruction corresponds to a point in camera 1, so does that
point in each reconstruction. In turn, this means you can triangulate the point in
each reconstruction with the point in camera 1. This leads to four distinct points
in space, shown in the figure. Notice that, in this figure, only one of the four
triangulated points lies in front of both camera 1 and a reconstruction. This is the
general case. You can choose the correct reconstruction by this property, which
you can test by looking at the sign of the Z-coordinate in each camera’s frame
exercises .

Procedure: 33.7 Disambiguating odometry solutions

Construct the four solutions of Procedure 33.6, yielding four distinct
cameras. Pair each of these cameras with the unit camera (which is
camera 1) and for each of these four pairs, triangulate a set of points.
Ideally, in one pair, the points will all be in front of both cameras. In
practice, error in localizing the points might lead some to be behind
one camera, so choose the reconstruction where the largest fraction of
reconstructions is in front of both cameras.
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FIGURE 33.6: There are four distinct possible reconstructions for the transformation
from camera 1 to camera 2 implied by a known essential matrix. In this figure,
camera 1 is at the canonical location, and the red, green, blue and orange cam-
eras are the four reconstructions. Notice how red and green are related by a 1800

rotation about the translation vector, as are blue and orange. The red-green pair
are associated with one sign for the translation estimate (the black arrow), and the
blue-orange pair are associated with the other sign. Each reconstruction has a tri-
angulation of a point associated with it. Here I have used the point at each camera
center exercises . I have shown the triangulated points; 1 corresponds to the blue
camera; 3 to the orange camera; 2 to the green camera and 4 to the red camera.
Notice how only one triangulation – in this case, 2 – produces a point that lies in
front of both camera 1 and the reconstruction. In turn, the green camera is the
correct reconstruction.


