CHAPTER 4

Patterns, Smoothing and Filters

In this chapter, we introduce methods for obtaining descriptions of the ap-
pearance of a small group of pixels. These methods can be used to find patterns,
to suppress noise, and to control aliasing.

4.1 LINEAR FILTERS AND CONVOLUTION

Section 2.3.2 showed improvements in downsampling obtained by replacing each
image pixel with a weighted average of pixels. This useful trick is easily generalized
into an important idea. The weights in that section were either uniform, or large
at the pixel of interest, and falling off at distant pixels. Changing the weights leads
to interesting outcomes.

4.1.1 Convolution and Filtering

For the moment, think of an image as a two dimensional array of intensities. Write
Z;; for the pixel at position ¢, j. Recall that Section 2.3.4 gave a procedure to
compute a smoothed image for subsampling.

Procedure: 4.1 Convolution

Convolution uses a source image S, and forms a new image N from
that source. The 4, j'th pixel in A is now a weighted average of a
(2k — 1) x (2k — 1) window of pixels in S, centered on 7, j. The weights
are in a mask M and produce N from the original image and the mask,
using the rule

Mj = ZIi—u,j—vMuv-
uv

Convolution is sometimes written

N=Mx*T.

The procedure works whatever the mask M (the mask is sometimes called a
kernel or a filter). In some sources, you might see M * *Z (to emphasize the fact
that the image is 2D). This operation is known as convolution, and M is often
called the kernel of the convolution. You should look closely at the expression; the
“direction” of the dummy variable u (resp. v) has been reversed compared with
what you might expect unless you have a signal processing background. A variant
is sometimes called correlation or filtering.

56

Section 4.1 Linear Filters and Convolution 57

M
° X S
..o Xx ’-
[)
Nle X * e = <
®

FIGURE 4.1: To compute the value of N = W xZ. at some location, you shift a copy
of M (the flipped version of W) to lie over that location in Z; you multiply together
the non-zero elements of M and T that lie on top of one another; and you sum the
results. To compute the value of N = filter(Z,W) at some location, just omit

flipping W.

Procedure: 4.2 Filtering

Filtering computes

Mj = ZIi-l—u,j—i-vMuv

uv

This is sometimes written

N = filter(M, 7).

The difference between convolution and filtering isn’t particularly significant,
but if you forget that it is there, you compute the wrong answer. Notice that if you
flip the mask M in both directions to form W, so

Wuv - Mfu,fv

then
filter(W,ZI) = M« T.

In each case, ignore the range of the sum, and assume that the sum is over
a large enough range of v and v that all nonzero values are taken into account.
Furthermore, assume that any values that haven’t been explicitly specified are
zero; this means that we can model the kernel as a small block of nonzero values
in a sea of zeros. An important property of both convolution and filtering is that

58 Chapter 4 Patterns, Smoothing and Filters

2u+tl X 2v+1 M-2u X N-2 v Pafiding
kernel valid region Sip
A4

TMXN

image

FIGURE 4.2: To compute the value of the convolution for pizels at the edge of an
mmage you will need to know the values of pixels outside the image. The set of
valid pixels — those where you have all the image pixels you need to compute the
convolution — is somewhat smaller than the original image. This inconvenience
can be avoided by padding the image with values that lie outside the original block.
The mid-gray box represents an M X N image, and the dark box a 2u+1 x 2v + 1
kernel. The valid region is lighter gray. It can be constructed by placing the kernel
at the top left and bottom right corners of the image, then constructing the box
that joins their centers (left). A version of this construction reveals how the image
should be padded to produce an M x N result. Place the center of the kernel at
the bottom left and top right of the image, and construct the box that joins their
outer corners (right). Most APIs offer a variety of procedures to put pizel values
in these locations, including: zero-padding; constant padding; circular padding (join
the edges of the image to form a torus); reflection padding (reflect image about the
edges); and replication padding (make copies of the last row or column as required).

the result depends on the local pattern around a pixel, but not where the pixel is.
Define the operation shift(Z,m,n) which shifts an image so that the 4, j’th pixel
is moved to the ¢ — m, 7 — n’th pixel, so

Shift(I, m, n)ij = Iifm,jfn'
Ignore the question of the range, as shift just relabels pixel locations.

4.1.2 The Properties of Convolution
Most imaging systems have, to a good approximation, three significant properties.

Write R(f) for the response of the system to input f. Then the properties are:

e Superposition: the response to the sum of stimuli is the sum of the indi-
vidual responses, so

R(f +9) = R(f) + R(9);

Section 4.1 Linear Filters and Convolution 59

e Scaling: the response to a scaled stimulus is a scaled version of the response
to the original stimulus, so

R(kf) = kR(f).

An operation that exihibits superposition and scaling is linear.

e Shift invariance: In a shift invariant linear system, the response to a trans-
lated stimulus is just a translation of the response to the stimulus. This
means that, for example, if a view of a small light aimed at the center of the
camera is a small, bright blob, then if the light is moved to the periphery, the
response is same small, bright blob, only translated.

A device that is linear and shift invariant is known as a shift invariant linear system.
The operation represented by the device is a shift invariant linear operation.

Some systems accept a continuous signal and produce a continuous signal. A
natural example is a lens, which takes a pattern of light and produces a pattern of
light. Others accept a discrete signal (a vector; an array) and produce a discrete
signal. A natural example would be smoothing with a Gaussian. Either kind of
system can be linear, and either kind of system can be shift invariant. It turns
out that any operation that is shift invariant and linear can be represented by a
convolution, and this is true for either continuous or discrete signals.

413

60 Chapter 4 Patterns, Smoothing and Filters

Useful Fact: Check that:

e Convolution is linear in the image, so

Wx (kL) = kW=x1I)
Wx(IT+T) = WxI+WxJ

and filtering is linear in the image, too.
o Convolution is linear in the mask, so

(EW)xZ = k(WxI)
W+V)*xT WL +V*T

and filtering is linear in the mask, too.

e Conwvolution is associative, so
Wx(VxI)=WxV)*xZL
and filtering is associative, too.
e Convolution is shift-invariant, so
W x (shift(Z,m,n)) = shift(W «Z,m,n)

and filtering is shift-invariant, too.

Inconvenient Details

Now consider convolving an M x N image with a 2u + 1 X 2v 4+ 1 kernel. Strips of
the result of width v on the left and the right side and strips of height u at top and
bottom contain values that are affected by pixels outside the image (Figure 4.2).
Convolution could report only the values not affected by pixels outside the image
— sometimes called the valid region of the convolution. This would turn an M x N
image into an M — 2u X N — 2v image.

Attaching strips of width u on the left and right and height v on top and
bottom would produce an image of size M +2u x N +2v — this is padding. Assuming
the pixel values in these strips can be obtained somehow, convolving this padded
image with the kernel would produce a M x N valid region. Padding like this
is convenient, because there is no need to keep track of how much images have
shrunk, but padding can have consequences (Section 15.10). Typically, APT’s make
a variety of kinds of padding easy. One is zero padding (outside strips are zero);
another is reflection padding (outside strips obtained by reflecting around the outer
boundaries of the image).

The outer boundaries of an image mean that, in practice, convolution is not

Section 4.1 Linear Filters and Convolution 61

Positive Negative Positive Negative
Normalized
Convolution Convolution

FIGURE 4.3: Various zero-mean filters applied to a monochrome image of a pineapple
plant (shown in the top row, for reference), to show filters are simple pattern
detectors. Details in the text. Image credit: Figure shows my photograph of a
pineapple in the Singapore botanical garden.

shift-invariant. This is because, in practice, shifting an image is not just a matter
of relabelling pixels. If one (say) pans a camera, some pixels “fall off” one edge of
the image and are lost, and other new pixels with new wvalues appear at the other
edge. Convolution cannot be invariant to this operation, because the value of the
convolution cannot be computed for unknown pixels.

62 Chapter 4 Patterns, Smoothing and Filters

4.1.4 Pattern Detection by Convolution

You should think of the value of N;; as a dot-product. Convolution with a mask is
the same as filtering with a flipped mask. But when you filter, to compute the value
of N at some location, you place the flipped version of the mask at some location
in the image; you multiply together the elements of the image and the mask that
lie on top of one another, ignoring everything in the image outside the mask; then
you sum the results (Figure 4.1). Reindex the two windows to be vectors, and the
result is a dot product. This view explains why a convolution is interesting: it can
be used as a very simple pattern detector.

Recall the properties of a dot product. Write u and v for two vectors, and 1
for a vector of ones. Then u” (v + 1) = u”v + cu”'1. Interpreting u as the vector
of kernel weights and v as the vector of image values suggests that using a filter
with zero mean is a good idea. For a zero-mean filter, u”1 = 0, which means the
value of the filter can’t be changed by adding a constant to the image.

When you add a constant to the image, you want the smoothed image to
change, so a zero-mean filter is no use for smoothing. It is very useful for pattern
detection. Recall that the dot-product of two unit vectors u and v is largest when
they are the same, and smallest when u = —v. This means that the zero-mean
filter that gives the most positive response to an image pattern looks like that
pattern, and the zero-mean filter that gives the most negative response looks like
that pattern, but with contrast reversed (i.e. light swapped to dark and dark
swapped to light).

Useful Fact: A zero-mean filter is a pattern detector that responds
positively to image patches that look like it, and negatively to patches that
look like it with a contrast reversal

4.1.5 Normalized Convolution

If the mean of the kernel is zero, scaling the image will scale the value of the con-
volution. One strategy to build a somewhat better pattern detector is to normalize
the result of the convolution to obtain a value that is unaffected by scaling the im-
age. For W a zero mean kernel, G a gaussian kernel, and € a small positive number
compute

WxT
GxT+e€

Here the division is element by element, € is used to avoid dividing by zero, and
G x T is an estimate of how bright the image is. This strategy, known as normal-
ized convolution produces an improvement in the detector. Figure 4.3 compares
normalized convolution to convolution. The right two frames show the positive
and negative components of the normalized convolution (divide the filter responses
by an estimate of image intensity). The normalized convolution is more selective.
Responses are shown on a scale where zero is dark and a strong response is light.

Section 4.1 Linear Filters and Convolution 63

It is now more usual to manage these difficulties by learning kernels that behave
well (Section 15.10).

Useful Fact: Normalized convolution divides by an estimate of intensity
to produce a better pattern detector.

4.1.6 RelLU's

Write W for a kernel representing some pattern you wish to find. Assume that W
has zero mean, so that the filter gives zero response to a constant image. Notice
that N = WxZ is strongly positive at locations where Z looks like YW, and strongly
negative when Z looks like a contrast reversed (so dark goes to light and light goes
to dark) version of W. Usually, you would want to distinguish between (say) a light
dot on a dark background and a dark dot on a light background. Write

z forz>0
0 otherwise

relu(()z) = {

(often called a Rectified Linear Unit or more usually ReLU). Then relu(W * T) is
a measure of how well W matches 7 at each pixel, and relu(—W x T) is a measure
of how well W matches a contrast reversed Z at each pixel. The ReLLU will appear
again.

Figure 4.3 give some examples. The filters are shown on the far left, each in
the top left hand corner of a field of zeros the same size as the image; this gives some
sense of spatial scale. The lightest value is the largest value of the filter, the darkest
is the smallest. The left two frames show the positive and negative components of
the response to the filter. The positive responses occur where (rather roughly) the
image “looks like” the filter. Similarly, negative responses occur where the image
“looks like” a contrast reversed version of the filter. Notice how the filters really
are pattern detectors (the big dark blob gets responses from big dark blobs, and
the small bright blob gets responses from small bright blobs), but they are not very
good pattern detectors. Something that causes a bar filter to response will often
also get a response from a blob filter. Further, the region of small bright leaves on
the bottom of the image produces strong positive responses. The filter is linear, so
bright patterns that don’t look like the filter tend to give responses as strong as
dark patterns that do. It can be useful to suppress small responses, and it is easy to
do so by subtracting a small constant from the response before applying the ReL.U
(exercises).

Useful Fact: A ReLU can be used to separate positive and megative
responses to produce a better pattern detector.

64 Chapter 4 Patterns, Smoothing and Filters

Kernel block 2

N

Feature
map 2

NN
N

Feature
map 1

Kernel block 1

FIGURE 4.4: On the left, two kernels (now 3D, as in the text) applied to a set of
feature maps produce one new feature map per kernel, using the procedure of the
text (the bias term isn’t shown). Abstract this as a process that takes an x X y x d

block to an X xY x D block (as on the right).

FIGURE 4.5: Multichannel convolution easily yields a simple detector for colored
patterns. Image credit: Figure shows my photograph of a pineapple in the Singapore

botanical garden.

Section 4.1 Linear Filters and Convolution 65

4.1.7 Multi-Channel Convolution

The description of convolution anticipates monochrome images, and Figure 4.3
shows filters applied to a monochrome image. Color images are naturally 3D ob-
jects with two spatial dimensions (up-down, left-right) and a third dimension that
chooses a slice or channel (R, G or B for a color image). Color images are sometimes
called multi-channel images. Multi-channel images offer a natural for representa-
tions of image patterns, too — two dimensions that tell you where the pattern is
and one that tells you what it is. For example, the results in Figure 4.3 can be
interpreted as a block consisting of eight channels (four patterns, original contrast
and contrast reversed). Each slice is the response of a pattern detector for a fized
pattern, where there is one response for each spatial location in the block, and so
are often called feature maps (it is entirely fair, but not usual, to think of an RGB
image as a rather uninteresting feature map).

For a color image Z, write Zy;; for the k’th color channel at the ¢, j’th location,
and K for a color kernel — one that has three channels. Then interpret N = Z * K
as

/\/ij = ZIk,ifu,jfvlckuv

kuv

which is an image with a single channel. This N is a single channel image that
encodes the response to a single pattern detector. Much more interesting is an
encoding of responses to multiple pattern detectors, and for that you must use
multiple kernels (often known as a filter bank). Write KU for the I’th kernel, and
obtain a feature map

Niig =3 ThiujoKim,

kuv

This notation is quite clunky, because it isn’t a three dimensional convolution (look
at the directions of the indices). This never matters for our purposes. Another
clunky feature of the notation is that applying the same kernel to each layer of a
color image requires a fairly odd set of kernels (exercises). It has two enormous
virtues. First, convolution can be used to detect colored patterns (Figure 4.5).
Second, convolution becomes an operation that turns a three dimensional object
— a stack of channels, a multi-channel image or a feature map, according to taste
— into another such object, so you can apply a convolution to the results of a
convolution.

Remember this: Convolution and filtering are largely equivalent. Con-
volution can be used to smooth images and to detect patterns. ReLU’s can
be used to manage contrast reversal effects. Multichannel convolution can
be used to build pattern detectors for color images. Multichannel convolu-
tion with R kernels will map a block of data structured as C x M x N (by
convention, C' is the number of channels and M and N are spatial dimen-
stons) to a block of data structured as R x U x V.

66 Chapter 4 Patterns, Smoothing and Filters

4.2 YOU SHOULD

421

422

423

remember these facts:

Convolution and filtering are crucial building blocks. 53
Matrices: Trace o e 422
Matrices: Frobeniusnorm 423

remember these procedures:

Convolution 44

Filtering e 45

RQ Factorization 423

K-Means Clustering 440
be able to:

e Convolve an image with a kernel using an APL.
e Remember the properties of convolution.

e Recognize a filter as a simple pattern detector.
e Explain why a zero mean kernel is useful.

e Explain why normalized convolution is useful.
e Explain why a ReLU is useful.

e Visualize multi-channel convolution as a process that takes a block of data to
another block of data.

