
C H A P T E R 15

Registration

Many camera movements cannot be modelled by a pure translation of the
image. There might be rotation or scaling or (as Section 15.10 shows) a projective
transformation. It is natural to consider a mosaic that uses a richer family of
transformations. However, the current registration procedure – compute the cost
function at many different translations, and choose the best – becomes unwieldy
when there are more transformation parameters to deal with. The number of
objective function values needed grows exponentially in the number of parameters
in the transformation, so even translation and rotation become unwieldy.

15.1 REGISTRATION PROBLEMS

A natural approach to building mosaics with richer families of transformation uses
interest points. You find interest points in first and second image; establish corre-
spondences by determining which points represent the same image window; then
compute a transformation from these correspondences. This is an instance of a
general recipe that applies to a very wide range of problems

15.1.1 General Registration

The general problem looks like this. You have two point clouds – two sets of points
with no other structure. The locations of the interest points in an image form a
2D point cloud, but point clouds can have any dimension. Write P for a point
cloud whose i’th point is pi and so on. Write X and Y for the two point clouds,
T for a transformation, T (y) for the transformed version of the point y, and T (Y)
for the transformed version of the point cloud. Further, you know that there is a
transformation T so that T (Y) is “close” to X . You must find this transformation.

In the simplest case, for each point in Y there is a unique corresponding
point in X and for each point in X there is a unique corresponding point in Y and
you know which point corresponds to which. Here the point clouds must have the
same number of points in them. Solutions to this case (Section 15.2) are relatively
straightforward and provide building blocks for more complicated cases. In most
cases, you need to estimate correspondences from the data. Doing so creates issues
that vary from application to application.

15.1.2 Application: Registering Images

Building mosaics is one reason to register two images, but it isn’t the only one.
Another application is change detection. You have (say) an aerial image of a suburb
taken ten years ago, and another taken recently. One way to know what has changed
is to register the images and look at the differences. This line of reasoning is widely
useful. For example, you have a x-ray image of a breast at a previous exam and now
– looking at the differences might reveal changes that indicate disease or the progress

198

Section 15.1 Registration Problems 199

of disease. Yet another application registers different types of image. You might
have a thermal image of the suburb and a color image of that suburb: registering
them allows you to describe imaged points in more detail – how hot they are and
what color they are. This recipe is particularly useful in medical applications,
where it is common to have two images of some structure obtained using different
procedures.

Point clouds aren’t an excellent abstration for image registration, because you
know more about the interest points than just where they are. You know what the
image looks like around the interest point as well. This means you could obtain
correspondences by finding interest points, computing local coordinate systems and
descriptors, then matching interest points in A to those in B using approximate
nearest neighbors.

The procedure looks like this. For each interest point in A (write the feature
vector of the i’th as ai), you find the interest point in B whose feature vector is
most similar. Assume that this is the j’th point in B, so that (ai−bj)

T (ai−bj) is
smaller than (ai − bk)

T (ai − bk) for k ̸= j. Now check the matching is symmetric
– if bj is closest to ai in B, then ai should be the closest point in A to bj . Now
look at pairs where the matching is symmetric and the distance between matched
feature vectors is small – these are likely to be corresponding points if the distance
threshold is small enough.

Some of the resulting correspondences are likely to be wrong. As an extreme
example, consider registering two images of checkerboards. In each image, there
will be an awful lot of corners of the same pattern in each image. The interest point
matching procedure finds pairs that look like one another, and so has no way to
choose which pairs are good. Generally, with good interest point descriptors, the
image registration case produces a relatively large fraction of good correspondences.

15.1.3 Application: Registering 3D Point Clouds

LIDAR sensors query depth at a grid of sampling directions which usually lie in
a cylinder around the sensor, and report (x, y, z) points. The sensor does not
usually report anything else about each sample, so the point cloud is a fairly good
abstraction here. You have a vehicle with a LIDAR sensor, and drive it around
an indoor area taking LIDAR measurements. You estimate the location of the car
each time you measure by looking at, say, wheel revolutions or GPS. This gives
you a fair estimate of the registration between measurements, and want to improve
this registration to build a LIDAR map of the area. This case is rather different to
image registration because the points will have no associated descriptions so you
can’t establish correspondence using descriptors. However, you have good initial
estimates of the registration.

Once you have the map of the area, the car moves to some unknown location
and takes a LIDAR measurement. You can tell where the car is by registering the
LIDAR measurement to the map. Again, you can’t establish correspondence using
descriptors. This version of the registration problem has some interesting problems
that come from sampling issues (below).

200 Chapter 15 Registration

15.1.4 Application: Registering Meshes to Point Clouds

Another standard problem is to find instances of a CAD model in data from a
LIDAR sensor. For example, you might have a CAD model of a car, and want to
find if that car appears in the LIDAR data and where it appears. Further, CAD
models can always be reduced to triangle meshes. A natural procedure is to sample
points on the mesh model to get a point cloud, then treat the problem as a point
cloud registration problem. Again, you can’t get descriptions of points that are
good enough to estimate correspondence accurately. There are quite likely to be
many bad correspondences, because the LIDAR data has many points that don’t
lie on the car.

15.2 WEIGHTED LEAST SQUARES REGISTRATION WITH EXACT CORRESPONDENCES

The core engine of any registration solution is weighted least squares where the
correspondences are known. How one uses this engine depends somewhat on the
problem. Finding a solution is always an optimization problem, but the details of
this problem differ from transformation to transformation.

15.2.1 Affine Transformations

For an affine transformation, T (y) isMy+ t. Further, there is a transformation T
so that T (yi) is close to xi for each i. Write ri for the vector from the transformed
yi to xi, so

ri(M, t) = (xi − (Myi + t))

and
Cu(M, t) = (1/N)

∑
i

rTi ri

should be small. Because it will be useful later, assume that there is a weight wi

for each pair and work with

C(M, t) =
∑
i

wir
T
i ri

where wi = 1/N if points all have the same weight. The gradient of this cost with
respect to t is

−2
∑
i

wi (xi −Myi − t)

which vanishes at the solution, so that

t =

∑
i

wixi −M
∑

wiyi∑
i wi

.

Now if
∑

i wixi =
∑

i wiMyi = M(
∑

i wiyi), then t = 0. An easy way to
achieve t = 0 is to ensure

∑
i wixi = 0 and

∑
i wiyi = 0. Write

cx =

∑
i wixi∑
i wi

Section 15.2 Weighted Least Squares Registration with Exact Correspondences 201

for the center of gravity of the observations (etc.) Now form

ui = xi − cx and vi = yi − cy

and if you use U and V, then the translation will be zero and must only estimate
M. Further, the estimate M̂ of this matrix yields that the translation from the
original reference points to the original observations is cx − M̂cy.

FindingM now reduces to minimizing

∑
i

wi (ui −Mvi)
T
(ui −Mvi)

as a function ofM. The natural procedure – take a derivative and set to zero, and
obtain a linear system (exercises) – works fine, but it is helpful to apply some
compact and decorative notation.

Write W = diag ([w1, . . . , wN]), U =
[
uT
1 , . . . ,u

T
N

]
(and so on). Recall all

vectors are column vectors, so U is N × d. You should check that the objective can
be rewritten as

Tr
(
W(U − VMT)(U − VMT)T

)
.

exercises Now the trace is linear; UTWU is constant;

Tr (A) = Tr
(
AT
)
;

and

Tr (ABC) = Tr (BCA) = Tr (CAB)

(check this by writing it out, and remember it; it’s occasionally quite useful). This
means the cost is equivalent to

Tr
(
−2UTWVMT

)
+ Tr

(
MVTWVMT

)
which will be minimized when

MVTWV = UTWV

(which you should check exercises). The exercises establish cases where VTWVT

will have full rank, and in these – the usual – casesM is easily obtained exercises
. Notice this derivation works whatever the dimension of the points.

202 Chapter 15 Registration

Procedure: 15.1 Weighted Least Squares for Affine Transformations

You have N correspondences (xi,yi) each with a weight wi and wish
to find an affine transformation (M, translation t). by minimizing∑

i

wi(xi −Myi − t)T (xi −Myi − t)

Write

cx =

∑
i wixi∑
i wi

cy =

∑
i wiyi∑
i wi

ui = xi − cx

vi = yi − cy

Write U =
[
uT
1 ,u

T
2 , . . . ,u

T
N

]
(etc) and W = diag(w1, . . . , wN). The

least squares estimate M̂ satisfies the linear system

M̂VTWV = UTWV

and the least squares estimate t̂ of t is

t̂ = cx − M̂cy

15.2.2 Euclidean Motion

One encounters affine transformations relatively seldom in practice, though they
do occur. Much more interesting is the case where the transformation is Euclidean.
The least squares solution above isn’t good enough, because theM obtained that
way won’t be a rotation matrix. But a neat trick yields a least squares solution for
a rotation matrix.

As in the previous section, subtract the centers of gravity to get the transla-
tion, and work with ui and vi. The problem is now to choose R to minimize

∑
i

wi(ui −Rvi)
T (ui −Rvi).

This can be done in closed form (a fact you should memorize, because it is extremely

Section 15.2 Weighted Least Squares Registration with Exact Correspondences 203

0.05 0.3

FIGURE 15.1: Least squares registration is quite well-behaved under even quite pro-
nounced gaussian noise. In each figure, the 40 green (downward pointing) trian-
gles, which lie on a rectangle one unit high and three units wide are subject to a
Euclidean transformation, then noise is added, to obtain the red circles. I then used
least squares to estimate a Euclidean transformation using corresponding green and
red points, and applied this transformation to register the red points to the green,
yielding the purple (upward pointing) triangles. I have joined each registered point
to the original with a dark line. The thin dark rectangle shows the result of the
estimated transformation applied to the true rectangle underlying the red points.
The green triangles lie on it if the transformation is correctly estimated. Left: the
noise is isotropic Gaussian noise, with standard deviation 0.05 (so 1/20 of the rect-
angle height); right, the standard deviation is 0.3 (or about 1/3 of the rectangle
height). In each case, the parameters estimated by least squares are close to the
transformation actually applied.

useful). The objective function can be transformed to

∑
i

wi(ui −Rvi)
T (ui −Rvi) = Tr

(
W(U − VRT)(U − VR)T

)
= Tr

(
−2VTWUR

)
+K

(because RTR = I)

Here K is a constant that doesn’t involve R and so is of no interest. Now compute
an SVD of VTWU to obtain VTWU = AΣBT where A, B are orthonormal, and
S is diagonal (Section 15.10 if you’re not sure). Now BTRA is orthonormal, and
we must maximize Tr

(
BTRAS

)
, meaning BTRA = I (check this if you’re not

certain), and so R = BAT .

204 Chapter 15 Registration

Procedure: 15.2 Weighted Least Squares for Euclidean Transformations

We have N reference points xi whose location is measured in the agent’s
coordinate system. Each corresponds to a point in the world coordinate
system with known coordinates yi, and the change of coordinates is a
Euclidean transformation (rotation R, translation t). For each (xi,yi)
pair, we have a weight wi. We wish to minimize∑

i

wi(xi −Ryi − t)T (xi −Ryi − t) (15.1)

Write

cx =

∑
i wixi∑
i wi

cy =

∑
i wiyi∑
i wi

ui = xi − cx

vi = yi − cy

Write U =
[
uT
1 ,u

T
2 , . . . ,u

T
N

]
(etc); W = diag(w1, . . . , wN); and

SVD(UTWV) =
[
A,Σ,BT

]
. The least squares estimate R̂ is

R̂ = BAT

and the least squares estimate t̂ of t is

t̂ = cx − R̂cy

15.2.3 Projective Transformations

Recall from Section 3.2 that a projective transformation of an image is given by a
3× 3 matrixM that has full rank. The transformation can be written

 x1

x2

 =


m11y1 +m12y2 +m13
m31y1 +m32y2 +m33

m21y1 +m22y2 +m23
m31y1 +m32yy +m33

 .

Section 15.2 Weighted Least Squares Registration with Exact Correspondences 205

Higher dimensions follow the pattern. A projective transformation in d dimensions
is given by a d+1× d+1 matrixM that has full rank. The transformation is now

 x1
. . .
xd

 =



m11y1 + . . .+m1dyd +m1(d+1)

m(d+1)1y1 + . . .+m(d+1)dyd +m(d+1)(d+1)

. . .

md1y1 + . . .+mddyd +md(d+1)

m(d+1)1y1 + . . .+m(d+1)dyd +m(d+1)(d+1)

 .

and the residual error between xi andM(yi) is

ri = xi −



m11y1 + . . .+m1dyd +m1(d+1)

m(d+1)1y1 + . . .+m(d+1)dyd +m(d+1)(d+1)

. . .

md1y1 + . . .+mddyd +md(d+1)

m(d+1)1y1 + . . .+m(d+1)dyd +m(d+1)(d+1)

 .

A weighted least squares solution now solves∑
i

wir
T
i ri.

There isn’t a clean form for the solution, and numerical minimization is required.
You should use a second order method (Levenberg-Marquardt is favored; Chap-
ter 15.10). Experience teaches that this optimization is not well behaved without
a strong start point.

There is an easy construction for a good start point. For a pair of known points
x and y, you can cross multiply the equations for the projective transformation to
get

 0
. . .
0

 =



(
m11y1 + . . .+m1dyd +m1(d+1)

)
−

x1
(
m(d+1)1y1 + . . .+m(d+1)dyd +m(d+1)(d+1)

)
. . .(

md1y1 + . . .+mddyd +md(d+1)

)
−

xd
(
m(d+1)1y1 + . . .+m(d+1)dyd +m(d+1)(d+1)

)

 .

Here the mij are unknown, so this is a set of d homogenous linear equations in
(d+1)× (d+1) unknowns. In turn, if you have at least d+1 different (x,y) pairs
that meet conditions exercises , you can solve the system up to scale. But the
scale of the solution does not affect the transformation it implements, so you have a
start point. The resulting estimate ofM has a good reputation as a start point for
a full optimization. Notice this construction does not take weights into account. If
the weights come from IRLS, then you need this construction only at the start. For
every other iteration, the previous iteration will supply an acceptable start point
as well as weights.

206 Chapter 15 Registration

Procedure: 15.3 Estimating a Projective Transformation from Data

Given N known source points yi = (yi,1, . . . , yi,d) in affine coordi-
nates and N corresponding target points xi with measured locations
(xi,1, . . . , xi,d) and weights wi, obtain the projective transformationM
with i, j’th element mij mapping source to target by minimizing:∑

i

wiξ
T
i ξi (15.2)

where

ξi =


xi,1 −

m11yi,1 + . . .+m1dyi,d +m1(d+1)

m(d+1)1xi,1 + . . .+m(d+1)dxi,d +m(d+1)(d+1)

. . .

xi,d −
md1yi,1 + . . .+mddyi,d +md(d+1)

m(d+1)1xi,1 + . . .+m(d+1)dxi,d +m(d+1)(d+1)

 (15.3)

Obtain a start point by as a least squares solution to the set of homo-
geneous linear equations

0 = xi,1(m(d+1)1yi,1 + . . .+m(d+1)dyi,d +m(d+1)(d+1))−
m11yi,1 + . . .+m1dyi,d +m1(d+1)

. . .

0 = xi,d(m(d+1)1yi,1 + . . .+m(d+1)dyi,d +m(d+1)(d+1))−
m(d+1)1xi,1 + . . .+m(d+1)dxi,d +m(d+1)(d+1)

15.2.4 Probabilistic Interpretations and Variants

If the weights are uniform, then solving

∑
i

wir
T
i ri.

is equivalent to assuming that the error in point estimates is isotropic normal, and
maximizing the likelihood of the error. This equivalence is sometimes helpful. If
you know, for example, that errors in some directions are more likely than errors
in others, it can be a good idea to use an estimate of the covariance between errors
Σ, so the criterion becomes ∑

i

wir
T
i Σ

−1ri.

The modification to each procedure is straightforward (exercises).

Section 15.3 Robustness, IRLS and RANSAC 207

FIGURE 15.2: Significant registration errors can be caused by small numbers of out-
liers. This figure uses the same markers as 15.1. In this case, rather than adding
gaussian noise to the red points, I have replaced five of them with points drawn
uniformly and at random from a box surrounding the red points. The outliers are
marked with a red x. All others are in their transformed location and have not had
noise added. The estimated transformation has been significantly affected – note
how the fine dark rectangle doesn’t pass through the green triangles.

15.3 ROBUSTNESS, IRLS AND RANSAC

Correspondences are (x,y) pairs. Good correspondences are ones where T (y) is
close to x for the true transformation T . Errors are ones where T (y) is far from x for
the true transformation T . In the case of image registration, some correspondences
are likely to be wrong, but you should expect a relatively large fraction of good
correspondences. This is a robustness issue (Figure 15.2), which IRLS or RANSAC
can deal with as long as there are not too many bad correspondences.

15.3.1 IRLS for Registration

The IRLS recipe can be applied with very little modification to registration. Choose
a robust cost function from Section 13.2.1 or elsewhere. Recall this cost applies to
the residual. Write θ for the parameters of the transformation Tθ, and the residual
is now

r(xi,yi, θ) =
√
(xi − Tθ(yi))T (xi − Tθ(yi)).

The square root ensures that minimizing the least squares criterion is equivalent to

(1/2)
∑
i

(r(xi,yi, θ))
2.

For any given θ, the weights are now

wi =

 ∂ρ

∂u
r(xi,yi, θ)

 .

208 Chapter 15 Registration

IRLS, 5 outliers IRLS, 30 outliers

FIGURE 15.3: IRLS is effective at controlling registration errors caused by small
numbers of outliers, but can be overwhelmed by large numbers of outliers. This
figure uses the same markers as 15.1. As in Figure 15.2, I have replaced some red
points with points drawn uniformly and at random from a box surrounding the red
points, marked with a red x. I estimated the transformation with IRLS. On the left,
with a moderate fraction of outliers (5 in 40 points), the transformation estimate
is very good; on the right, where most points are outliers (30 in 40 points), the
estimate is much weaker.

As Figure 15.4 shows, IRLS does very well for moderate numbers of outliers, but
performance is degraded when there are too many. The procedure is important, so
I have put it in a box.

Section 15.3 Robustness, IRLS and RANSAC 209

Procedure: 15.4 Fitting a Transformation using Iteratively Reweighted
Least Squares

This procedure takes a set of N putatively corresponding point pairs
(xi,yi) and obtains an affine, Euclidean or projective transformation Tθ
that registers the pairs while discounting the effect of some correspon-
dence errors. Choose a robust cost function ρ(u;σ) from Section 13.2.1
or somewhere else.
Initialize with an initial set of parameters θ(1). One strategy is to
choose a small subset of S correspondences at random, then fit a
transformation with weights 1/S using the appropriate weighted least
squares procedure. Compute

r
(1)
i = r(xi,yi, θ

(1)) =
√
(xi − Tθ(yi))T (xi − Tθ(yi))

for each correspondence. Obtain an initial scale σ(1) using either appli-
cation considerations or

σ(1) = 1.4826 mediani |r(1)i | .

Compute

w
(1)
i =

dρ

du

r
(1)
i

where the derivative is evaluated at u = r
(1)
i and σ(1).

Now use iterate three steps:

Estimate the transformation using the appropriate
weighted least squares procedure to obtain the new set of

parameters θ(r+1) and r
(r+1)
i from w

(r)
i .

Estimate the scale, possibly using

σ(r+1) = 1.4826 mediani |r(r+1)
i | .

Alternatively, use a fixed scale obtained using application
considerations.

Re-estimate weights using

w
(r+1)
i =

dρ

du

r
(i)
i

where the derivative is evaluated at u = r
(r+1)
i and σ(r+1).

Terminate iterations when either the change in the transformation is
below a threshold or there have been too many.

210 Chapter 15 Registration

FIGURE 15.4: RANSAC can be effective at controlling registration errors caused by
outliers. This figure uses the same markers as 15.1. As in Figure 15.2, I have
replaced some red points with points drawn uniformly and at random from a box
surrounding the red points, marked with a red x. I estimated the transformation
with RANSAC. Here most points are outliers (30 in 40 points) (compare Figure
15.4) and the estimate is very good.

15.3.2 RANSAC

Adapting RANSAC to registration problems is mostly straightforward when there
are relatively few outliers. A line is completely specified by two points (which
is why Procedure 13.4 used two random samples). Different transformations re-
quire different numbers of correspondences, however. An affine transformation in
d dimensions is exactly specified by d + 1 correspondences (exercises) and a
projective transformation in d dimensions is exactly specified by d + 2 correspon-
dences. Euclidean transformations are more tricky. For example, in the plane, one
correspondence is not enough to specify a Euclidean transformation (you can rotate
about a point) and there are many sets of two correspondences that can’t be regis-
tered exactly with a Euclidean transformation (it doesn’t change lengths). Use two
correspondences for plane Euclidean transformations, and three for 3D Euclidean
transformations.

Section 15.3 Robustness, IRLS and RANSAC 211

Procedure: 15.5 Registration Using RANSAC

This procedure takes a set of N putative correspondences (xi,yi) and
obtains an estimate of the registration.
Start by choosing: the number of correspondences required to deter-
mine a transformation, n; the number of iterations required, k; the
threshold used to identify a correspondence that is good, t; the number
of good correspondences required to assert a model fits well, d. Set up
a collection of good fits, currently empty.
Iterate until k iterations have occurred:

Draw a sample of n distinct correspondences from the data
uniformly and at random, and determine the transformation
implied by those correspondences. If the transformation is
acceptable:

For each correspondence outside the sample, if the
length of the residual is less than t, the correspon-
dence is good.

If there are d or more good correspondences then
there is a good fit. Refit the transformation using
all these correspondences and a robust loss (likely
using IRLS). Add the result to a collection of good
fits.

Use the best fit from the collection of good fits, using the fitting error
as a criterion.
Choosing n: Use: d+ 1 correspondences for an affine transformation
in d dimensions; d+ 2 for a projective transformation in d dimensions;
two correspondences for plane Euclidean transformations; and three for
3D Euclidean transformations.
Determining the transformation: Use the relevant weighted least
squares procedure, with wi = 1/n. For affine transformations and Eu-
clidean transformations, check the eigenvalues of VWVT ; if the smallest
eigenvalue is too small, the solution will not be acceptable because of an
accidental alignment between correspondences. For Euclidean transfor-
mations, check the eigenvalues of UTWV; if the smallest eigenvalue is
too small, the solution will not be acceptable because of an accidental
alignment between correspondences. For projective transformations, ei-
ther check the eigenvalues of the hessian of the objective at the solution
for a small eigenvalue (best test), or check the eigenvalues of M̂ for a
large value (easiest); either is an indicator of an unacceptable solution

212 Chapter 15 Registration

FIGURE 15.5: ICP can converge quickly to the right transformation. The green
(upward pointing, to the right) u shape must be transformed to lie on the red
(sideways pointing, to the left) u shape. The running shape is purple. Left shows
the initial transformation. Right has been registered by 15 iterations of ICP – you
can see only two u-shapes, because the running points are now precisely registered
to the target points.

15.4 UNKNOWN CORRESPONDENCE

In cases like that of registering LIDAR point clouds to one another, or meshes to
LIDAR point clouds, there isn’t much – or, often, any – information at each point
that you can use to match. Just forming X × Y – taking every pair of points, one
from X and one from Y – and hoping that either IRLS will be able to tell good
from bad correspondences is very likely to fail. IRLS fails because there are far too
many bad correspondences and far too many local minima; you are highly unlikely
to be lucky enough to find a good solution.

Relying on RANSAC to determine correspondences is unwise. This doesn’t
contradict the previous section: there, one of the points in a correspondence was
replaced with an outlier, but the fraction of correspondences that were so affected
was relatively small (0.75 in one example). RANSAC can require very large numbers
of samples when the fraction of outliers is high. Say X has N points and Y has
M points, you want to compute a Euclidean transformation, and the only thing
you know about the correspondences is that they are one to one. Then at most
min(N,M) correspondences can be good. This means that in the best case you will
need to look at of the order of

1

[max(M,N)]
3

samples to see one set of three good samples. If there are fewer good correspon-
dences, the number of samples required will get worse. Anything you can do to
reduce the number of bad correspondences would be helpful.

Section 15.4 Unknown Correspondence 213

FIGURE 15.6: Some initial transformations can result in slow convergence of ICP.
The green (upward pointing, to the right) u shape must be transformed to lie on the
red (sideways pointing, to the left) u shape. The running shape is purple. Top
left shows the initial transformation; top right, the result after 15 iterations of
ICP; bottom left, after 30 iterations; and bottom right after 50 iterations. In
the last figure, you can see only two u-shapes, because the running points are now
precisely registered to the target points.

15.4.1 Iterated Closest Points or ICP

There is an alternative strategy that applies if you have a reasonable estimate of
the initial transformation. We have N reference points yi and M observed points
xi. For the moment, we will assume that all weights wi are 1. A straightforward,
and very effective, recipe for registering the points is iterative closest points or ICP.
The key insight here is that, if the transformation is very close to the identity,
then the yc(i) that corresponds to xi should be the closest reference point to xi.
This finding the closest reference point to each measurement and computing the
transformation using that correspondence. But the transformation might not be
close to the identity, and so the correspondences might change. We could repeat
the process until they stop changing.

Formally, start with a transformation estimate T1, a set of m
(1)
i = T (1)(yi)

(the running points) and then repeat three steps:

214 Chapter 15 Registration

FIGURE 15.7: ICP can converge to the wrong answer, typically when the initial trans-
formation is very different from the right answer. The green (upward pointing, to
the right) u shape must be transformed to lie on the red (sideways pointing, to the
left) u shape. The running shape is purple. Top left shows the initial transfor-
mation; top right, the result after 15 iterations of ICP; bottom left, after 30
iterations; and bottom right after 50 iterations. You can still see three u-shapes,
because the running points are incorrectly registered to the target points.

• Estimate correspondences using the transformation estimate. Then, for

each xi, we find the closest m(n) (say m
(n)
c); then xi corresponds to m

(n)
c(i).

• Estimate a transformation T (n+1) using the corresponding pairs.

• Update the running points by mapping m
(n)
i to T (n+1)(m

(n)
i) and

These steps are repeated until convergence, which can be tested by checking if
the correspondences don’t change or if T (n+1) is very similar to the identity. The
required transformation is then

T (n+1) ◦ T (n) ◦ . . . T (1) (15.4)

There are a number of ways in which this very useful and very general recipe
can be adapted. First, if there is any description of the points available, it can be

Section 15.4 Unknown Correspondence 215

FIGURE 15.8: If the two shapes that have been sampled differently, ICP can produce
poor results. The green (upward pointing, to the right) u shape must be transformed
to lie on the red (sideways pointing, to the left) u shape. The initial transformation
is shown by the purple shape. The ICP result is shown in orange. The two offset
cases are successful; the others are not.

used to cut down on correspondences (so, for example, we match only red points
to red points, green points to green points, and so on). Second, finding an exact
nearest neighbor in a large point cloud is hard and slow, and we might need to
subsample the point clouds or pass to approximate nearest neighbors (more details
below). Third, points that are very far from the nearest neighbor might cause
problems, and we might omit them (again, more details below).

15.4.2 ICP and Sampling

The ICP recipe becomes difficult to apply to point clouds when M or N are very
large. One obvious strategy to control this problem applies when something else –
say, a color measurement – is known about each point. For example, we might get
such data by using a range camera aligned with a conventional camera, so that every
point in the depth map comes with a color. When extra information is available,
one searches only compatible pairs for correspondences. As another example, you

might estimate a normal at each m
(n)
i and each yi by fitting a plane to it and a few

nearby neighbors (Section ??). Now assuming that the running points are quite
like the reference points, use only correspondences where the normals are nearly
parallel. Test this by testing whether the dot-product between normals is large
enough.

Large point clouds are fairly common in autonomous vehicle applications. For
example, the measurements might be LIDAR measurements of some geometry. It

216 Chapter 15 Registration

FIGURE 15.9: On the left a map of a simple arena, represented as a point cloud.
Such a map could be obtained by registering LIDAR measurements to one another.
A LIDAR or depth sensor produces measurements in the sensor’s coordinate sys-
tem, and registering these measurements to the map will reveal where the sensor is.
However, the sensor may measure points more densely at some positions than at
others. Left shows such a measurement; note the heavy sampling of points near the
corner and the light sampling on the edges. This can bias the registration, because
the large number of points near the corner mean that the registration error consists
mostly of errors from these points. It can also create significant computational prob-
lems, because finding the closest points will become slower as the number of points
increases. A stratified sample of the measurements (right) is obtained by dividing
the plane (in this case) into cells of equal area (usually a grid), then resampling the
measurements at random so there are no more than a fixed number of samples in
each box. Such a sample can both reduce bias and improve the speed of registration.
TODO: Source, Credit, Permission

is quite usual now to represent that geometry with another, perhaps enormous,
point cloud, which you could think of as a map. Registration would then tell the
vehicle where it was in the map. Notice that in this application, there is unlikely
to be a measurement that exactly corresponds to each reference point. Instead,
when the registration is correct, every xi is very close to some transformed yi, so
a least squares estimate is entirely justified. In cases like this, one can subsample
the reference point cloud, the measurement point cloud, or both.

The sampling procedure depends on the application, and can have significant
effects. For example, imagine you are working with LIDAR on a vehicle which
is currently in an open space next to a wall (Figure 19.1). There will be many
returns from the wall, and likely few from the open space. Uniformly sampled
measurements would still have many returns from the wall, and few from the open
space. This could bias the estimate of the vehicle’s pose (Figure 15.8). A better
alternative would be to build a stratified sample by breaking the space around the
vehicle into blocks of fixed size, then choosing uniformly at random a fixed number
of samples in each block. In this scheme, the wall would be undersampled, and the
open space would be oversampled, somewhat resolving the bias.

Another stratified sampling strategy is to ensure that surface normal direc-
tions are evenly represented in the samples. Make an estimate of a surface normal

Section 15.4 Unknown Correspondence 217

FIGURE 15.10: The sample of points used in registration can be biased in useful
ways. For example, (a) shows a cross section of a flat surface with a small groove
(above) which needs to be registered to a similar surface (below). If point samples
are drawn on the surface at random, then there will be few samples in the groove;
the dashed lines indicate correspondences. In turn, the registration will be poor,
because the surfaces can slide on one another. In (b), the samples have been drawn
so that normal directions are evenly represented in the samples. Notice this means
more samples concentrated in the groove, and fewer on the flat part. As a result,
the surface is less free to slide, and the registration improves.
TODO: what do c and d show? TODO: Source, Credit, Permission

at each point (for example, by fitting a plane to the point and some of its nearest
neighbors). Now break the unit sphere, which encodes the surface normals, into
even cells, and sample the points so that each cell has the same number of samples.
This approach is particularly useful when we are trying to register flat surfaces with
small relief details on them (Figure ??).

15.4.3 Beyond ICP

ICP minimizes a cost function∑
i

[
min
j
||xj − T (yi) ||22

]
=
∑
i

Ei(T) (15.5)

by finding the corresponding pairs (the xj that corresponds to yi), then minimiz-
ing, then repeating. This is an easy way to exploit the closed form solution for
T when correspondence is known, but it isn’t the only way. The min means the
objective function isn’t differentiable everywhere (exercises), but it is continuous,
and it is differentiable at most locations. This is usually a sign that straightfor-
ward optimization methods can be applied successfully, which is true here. The
Levenberg-Marquardt algorithm (Section ??) works particularly well here, because
for a particular correspondence, the cost is a least squares cost, and because it
doesn’t require second derivatives. Notice that, to obtain the gradient of Ei(T)
with respect to T, you need to know which xj is closest to T (yi), so you still need
to find the nearest neighbor.

