
C H A P T E R 9

Application:Denoising Images by
Optimization

You are given a noisy image and asked to produce the original. The detailed
rules may vary somewhat in different applications. For example, you might have
only a rough model of the noise process; you may have a detailed and accurate model
of the noise process (though this is unusual); the noise might be deterministic, but
depend on parameters you cannot know (this occurs with underwater images); you
may need to denoise very few images (or even only one – astronomy applications);
you may need to denoise any image, or any image of a particular class; and so on.

This chapter uses a master recipe for denoising. Write N for a noisy image,
and think of denoising as finding a denoised image D that is (a) close to N and (b)
more like a real image. Write

C(D) = [distance from D to N] + [unrealism cost for D]
= [data term] + [penalty term]

and choose a D that minimizes this cost function. Methods differ mainly by the
penalty term, which has a significant effect on how hard the optimization problem
is. This framework leads to very strong denoising methods, at the cost of solving
what can be a nasty optimization problem.

Denoising is an important topic for at least two reasons. First, it is extremely
useful to be able to improve images in various ways (Section ??). Second, the way to
denoise an image is to exploit information about what images are “like”, so studying
denoising strategies is a good way to build intuitions about images. For example,
gaussian smoothing (Section 5.2.1) or median filtering (Section 5.2.1) to suppress
noise works fairly well because most image pixels “look like” their neighbors. But for
some noise models, other procedures are a better choice than gaussian smoothing.
These procedures require building representations that expose what is important
about being an image and depend on deep and interesting qualitative insights on
images which will reappear.

9.1 CONSIDERATIONS

9.1.1 Denoising Color Images

Representing color is a broad subject, and Section 28.3 is a brief introduction. The
particular color representation one uses can be important in denoising. Section 8.1
showed that gradients in R, G and B tend to appear in the same place. This is
the result of two effects: RGB is not a particularly good color representation for
many applications, because the representation is highly correlated; and isoluminant
changes in color really are rare.

118

Section 9.1 Considerations 119

Image R G B

FIGURE 9.1: RGB color components are heavily correlated, as you can see by looking
at images where only one component has been smoothed.. The top row shows the
R, G, and B components of the color image at the left. The bottom row shows
color images obtained by smoothing one component, then recombining all three.
Notice that smoothing any of the R, G, B components alone leads to odd color
effects at edges (G is particularly bad). Image credit: Figure shows my photograph
of a building in downtown Manaus.

An important consequence is that denoising R, G, and B individually is a
bad idea, because a prediction error in one component may result in strange color
effects in the denoised images. This effect can become a serious issue for more
sophisticated denoising algorithms. The effect is easily observed. Smoothing one
of R, G, or B (but not the others) results in strange color effects (exercises ,
Figure 9.1).

Remarkably, one can choose a color space that largely decorrelates any image
rather well. LAB is such a color space. It has three attractions: first, it splits
images into an intensity component (L) and two color components (A) and (B),
which largely do not depend on intensity; second, these components are largely
decorrelated spatially; and third, short distances in the color space are rather a good
representation of human perception of the size of color changes. Section 28.3.2 offers
more detail on the construction of LAB. As Figure 9.1 shows, there is no particular
advantage to choosing the 0, 1, 2 images over LAB.

Correlation between RGB components is an experimental fact about the
world. Humans are much better at perceiving spatial detail in intensity than they
are in color (this has to do with correlation between RGB components, as well as
a variety of physiological details about how the human color system works). In an
appropriately chosen color space, the color components can be heavily smoothed
without affecting human perception of the image all that much (Figure 9.2). For
each denoising method, I will apply the following strategy to deal with color images:
decompose into LAB; use sophisticated denoising on L; and use a smoothed version
of A and B.

9.1.2 Paired Evaluation

An important part of denoising is knowing how well a procedure actually works.
For the moment, assume that you have access to a collection of test image pairs,

120 Chapter 9 Application:Denoising Images by Optimization

L A BImage

FIGURE 9.2: Decorrelating the components of a color image before smoothing is
important, but one does not need to do this on a per-image basis. The top row
shows the L, A, and B components for this image on the right. Because these
components can be negative, they have been scaled and shifted so that a zero value is
mid gray, the largest value is bright and the smallest is dark (the same scale has been
applied to each component so you can see relative sizes). The bottom row shows
color images obtained by smoothing one component, then recombining all three.
Smoothing L results in a blurry color image; smoothing A or B alone largely has no
effect. This means one can use sophisticated methods on the L component and just
smooth the A and B components. Image credit: Figure shows my photograph of a
building in downtown Manaus.

where you have a noisy version and the clean version.
One standard evaluation statistic is the mean PSNR or peak signal-to-noise

ratio. For each pair (N , C) of noisy version - clean version, first denoise the noisy
image to get D. Now compute the PSNR for the pair (D, C), using

psnr(D, C) = 20 log

max
ij
Cij√∑

ij (Dij − Cij)2

and average that PSNR over pairs. The PSNR has some good properties: as D
gets closer to C, the PSNR gets larger; and psnr(sD, sC) = psnr(D, C) for s > 0
(so you can’t change the PSNR by scaling the images). You need to know C to
compute the PSNR, so you can only use PSNR to evaluate if you know the right
answer. In some applications, versions of the original image that are uniformly

Section 9.1 Considerations 121

slightly brighter or slightly darker might be acceptable, but the PSNR will penalize
a method that can’t estimate the brightness of the ground truth image. In these
situations, one can use

psnr(D, C) = 20 log

max
ij
Cij

min
s

√∑
ij (sDij − Cij)2

.

PSNR doesn’t really take human perception into account, so that reconstruc-
tions with quite good PSNR might look bad to a user, and reconstructions with
quite bad PSNR might look good. For example, imagine the reconstruction is the
original image, but shifted by one pixel to the left (obtain the missing column by
copying its neighbor). The PSNR might be quite bad, but the reconstruction would
be good and would look good.

An ideal evaluation metric should not be seriously affected by shifts like this.
A natural construction is to compare summary properties of windows of pixels
rather than comparing pixels. This construction leads to the SSIM or structural
similarity index metric. The clean image and the denoised image are broken into
quite small overlapping windows; summary statistics for these windows are com-
puted and compared, with a metric that is quite robust to changes in intensity; and
the comparison is averaged over all windows. Implementations of SSIM appear in
most API’s.

Human observers have a variety of preferences that SSIM does not fully ac-
count for. For example, humans like sharp edges without ringing but can be re-
laxed about whether the edge is in the right place. As another example, humans
are surprisingly good at perceiving lines, and dislike edges that are close to, but
not on, a line. The LPIPS or Learned Perceptual Image Patch Similarity met-
ric is an attempt to deal with this. The clean image and the denoised image are
broken into overlapping windows; deep network features are computed for win-
dows; a weighted difference is computed for these features; and the comparison
is averaged over all windows. The features are learned using procedures quite
like that of Chapters 16 and 17. The reference Implementation of LPIPS is at
https://github.com/richzhang/PerceptualSimilarity, and many APIs offer
LPIPS evaluation.

9.1.3 Blind Image Quality Evaluation

Sometimes it is difficult to find pairs of clean images and denoised versions. For
example, you might not have clean versions of the noisy images; if you don’t trust
simulations of the noise model, you won’t have pairs. Evaluation in this case in-
volves telling whether a denoised image is “like an image”, using an image quality
metric. These metrics measure how much something that purports to be a natural
image is “like an image.” You should suspect that this is extremely hard to do
accurately, because, if you could, then denoising might be straightforward – take
something that purports to be a natural image, and make small adjustments until
it really is a natural image.

Metrics tend to take the following form. Choose some patches in the image;

122 Chapter 9 Application:Denoising Images by Optimization

Noisy version

Original

0.03 0.01 0.005 0.001

Reconstructions

Residuals

FIGURE 9.3: A color image (upper left), with additive gaussian noise (lower left),
denoised using weighted least squares (WLS; Section 9.2.1) at various settings of λ.
The denoised images are in the top row, with residual (noisy image - reconstructed
image) in the bottom row. The residual is shown on a scale where positive val-
ues are light, negative values are dark, and 0 is mid-gray. The noisy image was
transformed to LAB; the L component was smoothed with WLS; and the A and B
components were smoothed with a gaussian kernel. Notice the strong color noise in
the residual. The image noise is independent in R, G and B – so colors can change
sharply – and the denoiser is very effective at suppressing this effect. Notice how,
as λ is increased, the image does not become blurry (compare Figure ??). Edges are
largely preserved, but detail is lost with increasing λ. Image credit: Figure shows
my photograph of marmosets in Sao Paulo.

for these, compute some feature vectors; fit a probability model to these feature
vectors; and compare the parameters of the fitted model to the parameters of a
model fitted to a large number of natural images. Choosing some patches, rather
than all, seems to improve the accuracy of the measure, likely because different
images contain different numbers of “boring” patches – patches of, say, constant
color – and this might bias the model. This recipe was established by the NIQE
or Natural Image Quality Evaluator metric. Implementations of NIQE appear in
most APIs.

Section 9.2 Denoising by Optimization 123

9.2 DENOISING BY OPTIMIZATION

For this Chapter, the data term in the master recipe is∑
ij

(Dij −Nij)
2

(the ssd of Section 3.4.2). A good reconstruction could smooth the image over
quite long scales in regions where C is constant. The reconstruction must preserve
edges, so the smoothing would need to be over very short scales at edge points.
Ideally, smoothing would be along an edge rather than across it. But C isn’t known
(otherwise there would be nothing to do). All this suggests that the penalty function
needs to look at gradients in D.

9.2.1 Weighted Least Squares

The weighted least squares filter (almost always WLS) seeks a D that is (a) close
to N in squared error; (b) mostly has lower gradients than N ; and (c) has high
gradients when N does.

Rearrange all images into vectors, so N is vector n, and so on. This represen-
tation gives a convenient expression for the gradient. There are matrices Dx and
Dy that compute the gradient from the image (rearrange the finite differences of
Section 5.1.2, or the derivative of gaussians of Section 5.2.2, exercises). The
gradient of ⌈ can be expressed as (

Dx

Dy

)
d

(where the vector of x-derivatives is stacked on the vector of y-derivatives).
Now write Ax(n), Ay(n) for diagonal matrices of weights obtained from the

original image. Because these matrices are diagonal, think of them as producing
pixel by pixel weights on the cost of a derivative in D. So at a location where the
value of Ay is small, D could have a large y-derivative, but at locations where the
value is large, D must have a small y-derivative.

The new image d (a vector version of the denoised image D) should then solve

argmin
u

[u− n]
T
[u− n] + λuT

[
DT

xAT
xAxDx +DT

y AT
yAyDy

]
u

where the first term pushes d to be like n, the second term controls the derivatives of
d and λ is some weight balancing the two terms. Write L =

[
DT

xAT
xAxDx +DT

y AT
yAyDy

]
;

then solving this problem is a matter of solving

F(λ)d = (I + λL)d = n

which can be done in a variety of ways (exercises). The key question here is the
choice of Ax and Ay. A large derivative in D should only occur when the derivative
of N is large and reliable. Small derivatives N are untrustworthy, and should not
appear in D. So at pixels where n has a small x derivative, the relevant term in Ax

should be big. Similarly, when n has a large x derivative, the relevant term in Ax

124 Chapter 9 Application:Denoising Images by Optimization

0.1 100 10 1 0.1

FIGURE 9.4: The color image of Figure 9.11, with additive gaussian noise at σ = 0.1
denoised using total variation denoising (TVD; Section 9.2.2) at various settings
of λ. The denoised images are in the top row, with residual in the bottom row.
The residual is shown on a scale where positive values are light, negative values
are dark, and 0 is mid-gray. The noisy image was transformed to LAB; the L
component was smoothed with TVD; and the A and B components were smoothed
with a gaussian kernel. Notice the strong color noise in the residual. The image
noise is independent in R, G and B – so colors can change sharply – and the
denoiser is very effective at suppressing this effect. Notice how, as λ is increased,
the image does not become blurry (compare Figure ??). Edges are largely preserved,
but detail is lost with increasing λ. Image credit: Figure shows my photograph of
marmosets in Sao Paulo.

should be small. A fair choice is to form w = Dxn, and then the i, i’th element of
Ax is

1

|wi |α + ϵ

where α is some power, typically between 1.2 and 2, and ϵ is a small positive
constant to avoid division by zero; Ay follows.

There are several elements in this recipe that will recur. Notice that d is a
nonlinear function of n (because elements of n are used in the construction of L).
Assume L is known; then d is linear in n. You should think about this process as
one in which n is used to choose a different linear operation to map n to the value of
d at each pixel (exercises). In principle, one could insist that L be formed from
the denoised image u, but that would result in a very nasty optimization problem
indeed.

Natural variants of this procedure involve estimating an “easy” denoised ver-
sion d̂ of the original image, then using that to form L. In the simplest such
idea, d̂ is estimated with gaussian smoothing (but notice that doing this would be
equivalent to using derivative of gaussians to form Dx and Dy; exercises).

Section 9.2 Denoising by Optimization 125

0.3 100 10 1 0.1

FIGURE 9.5: The color image of Figure 9.11, with additive gaussian noise at σ = 0.3,
denoised using total variation denoising (TVD; Section 9.2.2) at various settings
of λ. Details in caption of Figure 9.4.

9.2.2 Total Variation Denoising

One natural modification of the cost function for Section 9.2.1 would be to change
the penalty term. One choice would be to try and obtain an image close to the noisy
image but with many zeros in the gradient – so regions have constant brightness
if possible, and a very slow ramp in intensity might be replaced with a constant
value.

The L2 norm, defined by

||v ||2 =
√
vTv.

Weighted least squares penalized the squared L2 norm of the weighted gradient.
Generally, a vector with small L2 norm can have many small, but non-zero, ele-
ments. This is because the square of a small number is very small, and the sum of
many very small numbers is still small. The weights in weighted least squares tend
to mitigate this, because small gradients have large penalty weights. Warning:It
is quite common to refer to the square of the L2 norm as the L2 norm. I will try
not to do this, because it’s wrong, but you’ll bump into this in the literature rather
often.

An alternative is to penalize the L1 norm of the gradients. The L1 norm of a
vector v is defined by

||v ||1 =
∑
i

|vi |.

A vector with small L1 norm will tend to have zero elements. You can see this by
comparing two cases. Write

C2(u) =
1

2
[u− g]

T
[u− g] +

λ

2
uTu

126 Chapter 9 Application:Denoising Images by Optimization

100 10 1 0.1

FIGURE 9.6: The color image of Figure 9.11, with a variant of poisson noise where
a randomly chosen pixel in a randomly chosen color channel is flipped, denoised
using total variation denoising (TVD; Section 9.2.2) at various settings of λ. The
denoised images are in the top row, with residual in the bottom row. The residual
is shown on a scale where positive values are light, negative values are dark, and
0 is mid-gray. The noisy image was transformed to LAB; the L component was
smoothed with TVD; and the A and B components were smoothed with a gaussian
kernel. Notice the strong color noise in the residual. The image noise is independent
in R, G and B – so colors can change sharply – and the denoiser is very effective
at suppressing this effect. Notice how, as λ is increased, the image does not become
blurry (compare Figure ??). Edges are largely preserved, but detail is lost with
increasing λ. Image credit: Figure shows my photograph of marmosets in Sao
Paulo.

and notice that the u that minimizes C2(u) is

1

1 + λ
g.

Now write

C1(u) =
1

2
[u− g]

T
[u− g] + λ||u ||1

and think about the u that minimizes C1(u). The penalty term isn’t differentiable,
which creates some inconvenience, but it is a sum over elements of u. Now consider
the i’th element of u. If gi is sufficiently large, then it is easy to show that

ui =
gi

1 + λ
.

Now consider what happens when gi = λ. If ui = 0, then the cost will be λ2/2, but
if ui = ϵ > 0 where ϵ is small, the cost will be (1/2)(λ2 + ϵ2). This analysis implies
correctly that if −λ < gi < λ, ui = 0. In turn, using an L1 norm as a penalty on
the gradients tends to cause the reconstruction to have many zero gradients

Section 9.3 Variants 127

In total variation denoising, the penalty is an L1 norm to the gradient. There
are a variety of ways of doing this. In one approach, one seeks

argmin
u

1

2
[u− g]

T
[u− g] + λ [||Dxu ||1 + ||Dyu ||1] .

Note this cost function isn’t differentiable, but it is convex. The optimization
problem for this cost function is well understood, and is relatively easily managed
(though beyond our scope). However, you should notice that the penalty encourages
zeros in the x and y components of the gradient, which isn’t necessarily the same
as zero gradients. One could get a solution where the zeros in the x components
are not aligned with the zeros of the y components, so the penalty is biased against
some gradient directions but not others.

An alternative formulation requires a bit more notation. Write dx,i(u) for the
i’th component of Dxu, and so on. Then solve

argmin
u

1

2
[u− g]

T
[u− g] + λ

[∑
i

√
d2x,i + d2y,i

]

which is also not differentiable. Solutions require rather more elaborate work than
solutions for the previous formulation, and tend to be somewhat slower, but are
not biased.

9.3 VARIANTS

9.3.1 Deblurring

Denoising takes something that isn’t quite an image and finds an image that is very
like it. Many phenomena can produce something that isn’t quite an image. For
example, take an image and blur it. The result isn’t an image, but it is quite close
to one. Recall from Section 15.10 that blurring is a linear operation. Write t for
the true image in vector form, d for the deblurred estimate in vector form, b for the
observed image in vector form, and B for the linear operator that blurs. Assume B
is known, at least for the moment (exercises). Notice b is not exactly the blurred
image. At the very least, there is some error from the numerical representation,
and there might be some small noise present, too. Then

b = Bt+ ξ

(where ξ is a vector of very small errors) and least-squares suggests choosing d that
minimizes

(Bd− b)
T
(Bd− b)

which would involve solving
BT Bd = BT b.

The least squares solution is not reliable, because B is a smoothing opera-
tor – say, convolve with a gaussian for concreteness. Then BT B must have some
small eigenvalues, because smoothing suppresses some patterns (which is the whole
point). Note that BT B must also have some eigenvalues fairly close to one, because

128 Chapter 9 Application:Denoising Images by Optimization

Blurred input

5e-3

5e-2

5e-1

1.5e-5

3e-5

5e-5
Ground truth

FIGURE 9.7: Left shows an image blurred with a gaussian, σ = 1; center left
shows regularized least squares reconstructions for different values of the regular-
ization constant; center right shows deblurred images, using the WLS strategy
of Section ??; and right shows the ground truth image. Notice that there must be
many very small eigenvalues in B, because when the regularization constant is small,
the reconstruction is almost unrecognizable (the black and white “snakeskin” pattern
is a set of very high frequency components that are easily smoothed out – which is
why they correspond to small eigenvalues). Increasing the regularization constant
helps control these patterns, but increasingly darkens the reconstruction. The WLS
method requires an estimate of the gradient, which I took from the least-squares
reconstruction. WLS helps control these components, but the best reconstruction
certainly isn’t perfect. Scoring whether a reconstruction is “like” an image is dif-
ficult. Image credit: Figure shows my photograph of a delicious monster in Sao
Paulo.

there are some patterns that change very little when smoothed. The patterns that

are suppressed by smoothing must be exaggerated by
(
BT B

)−1
, and may be very

heavily exaggerated. This is a serious problem, because the reconstruction is(
BT B

)−1 BT b =
(
BT B

)−1 BT [Bt+ ξ]

= t+
(
BT B

)−1 BT ξ.

Now even if ξ is very small, the term
(
BT B

)−1 BT ξ is likely large, because
(
BT B

)−1

has some large eigenvalues, and BT ξ is likely to have some components in the
direction of the corresponding eigenvectors.

There is a traditional procedure to handle very small eigenvalues in a matrix,
known as regularization. One seeks a minimum of

C(u) = (Bu− b)
T
(Bu− b) + λuTu

by solving
(BT B + λI)d = BT b

Section 9.3 Variants 129

Blurred input

5e-3

5e-2

5e-1

1.5e-5

3e-5

5e-5
Ground truth

FIGURE 9.8: Left shows an image blurred with a gaussian, σ = 3; center left shows
regularized least squares reconstructions for different values of the regularization
constant; center right shows deblurred images, using the WLS strategy of Section
??; and right shows the ground truth image (more details in the caption of Figure
9.7). This reconstruction problem is extremely difficult for these methods. Image
credit: Figure shows my photograph of a delicious monster in Sao Paulo.

for some choice of λ > 0, chosen to get good results. Notice that the map from
blurry image b to deblurred image d is linear in b, and should be shift invariant,
too exercises .

You can see regularization either as penalizing solutions that are too big,
or as constructing a matrix that is close to (BT B)−∞ but does not have small
eigenvalues. Alternatively, you can see regularization as a rather crude version of
the cost function for Section 9.2.1, where the penalty term discourages images that
are “too big”, so:

C(u) = [Term comparing Bu to b] + [Term evaluating realism of u]

= [data term] + [penalty term]

meaning it is possible to apply the master recipe (Section 9.2). I will apply the
methods of Sections 9.2.1 and 9.2.2 according to the master recipe, but other choices
are possible.

Weighted least squares: The main question to deal with in using weighted
least squares is how to form A§ and A†. One strategy is to form a regularized least
squares estimate û, so

(BT B + λI)û = BT g

then use this estimate to form A§ and A†. The problem then becomes large-scale
linear algebra (exercises). Figures 9.7 and 9.8 show some results.

Total variation denoising: One natural strategy to use total variation
denoising for upsampling and deblurring is to apply total variation denoising to

130 Chapter 9 Application:Denoising Images by Optimization

Blurred input

5e-3

5e-2

5e-1

Ground truth

4e-2

6e-2

8e-2

FIGURE 9.9: Left shows an image blurred with a gaussian, σ = 1; center left shows
regularized least squares reconstructions for different values of the regularization
constant; center right shows deblurred images, using the TVD strategy of Section
??; and right shows the ground truth image (more details in the caption of Figure
9.7). TVD can control the problem high frequency components, with an appropriate
choice of weight. Image credit: Figure shows my photograph of a delicious monster
in Sao Paulo.

a least squares prediction. Doing anything else requires substantial optimization
tricks, sketched in the exercises . Figures 9.9 and 9.10 show some results.

Denoising by controlling high spatial frequency components is quite helpful,
but deblurring exposes difficulties with the approach. Compare Figures 9.10 and ??
with Figures 9.9 and ??, and notice how much harder it is to deblur a really
blurry image than it is to deblur a slightly blurry image. This is because there
is very much less image evidence of high spatial frequencies (exercises) and
so the corresponding eigenvalues of (BT B)−∞ are very large and very hard to
control. Further, all the methods we have seen require engaging with inconvenient
optimization problems. Chapters 15.10 and 15.10 describe much richer classes of
image model that can be used for deblurring.

9.3.2 Trend and Detail Representations

The laplacian pyramid of Section 2.3.6 is an example of a trend and detail repre-
sentation of the image at multiple scales. The coarsest layer (LN in the notation
of that section) contains a heavily smoothed version of the image (the trend), and
each other layer contains detail at a particular scale (the layer index). The trend
at the i’th layer (or scale) can be obtained by upsampling the trend at the i+1’th
layer, then adding the detail from the i’th layer.

There is a large range of trend and detail representations available. You don’t
need to use a Gaussian filter, or down and upsampling by 2. For example, weighted
least squares can produce a trend and detail representation. In the simplest version,

Section 9.3 Variants 131

Blurred input

5e-3

5e-2

5e-1

1e-2

Ground truth
2e-2

4e-2

FIGURE 9.10: Left shows an image blurred with a gaussian, σ = 3; center left shows
regularized least squares reconstructions for different values of the regularization
constant; center right shows deblurred images, using the TVD strategy of Section
??; and right shows the ground truth image (more details in the caption of Figure
9.7). TVD has a much harder time controlling these components than for Figure
9.9. Image credit: Figure shows my photograph of a delicious monster in Sao
Paulo.

apply WLS to an image I to get W (I). This will be smoother than the original
image away from gradients, so that W (I) is trend and I −W (I) is detail. In turn,
forming

W (I) + α(I −W (I))

for some positive weight α will yield emphasized detail if α > 1, deemphasized
detail if α < 1, and the original image if α = 1 (Figure ??). Because weighted least
squares is not idempotent (which means W (W (I)) is not the same as W (I)), it can
be used to produce a form of laplacian pyramid, too. Write Pi for the i’th layer,

0.5 1 (Original) 1.5 2 3

FIGURE 9.11: For image I, write W (I) for the result of applying weighted least
squares. Then these images are W (I) + λ(I − W (I)) for different values of λ.
This deemphasizes detail (left) for λ < 1 and emphasizes detail (right) for λ > 1.
Image credit: Figure shows my photograph of marmosets in Sao Paulo.

132 Chapter 9 Application:Denoising Images by Optimization

Gaussian pyramid

Laplacian pyramid

MLS pyramid

FIGURE 9.12: A comparison of three types of pyramid. Top shows a gaussian pyra-
mid, where each frame has been blown up to the same size (so the pixels in the
coarsest layer are very large when printed). This is redundant, because each layer
is quite like the previous layer. Center shows a laplacian pyramid. Notice how
each layer contains rather distinct patterns at the scale associated with the layer.
For example, the bars on the marmosets’ tails appear in layer 2 and 3, but not oth-
ers. Bottom shows a pyramid constructed using the weighted least squares method
(but not downsampled). Layers again represent details of different sizes, but what
appears in what layer is not the same as in the laplacian pyramid. Image credit:
Figure shows my photograph of marmosets in Sao Paulo.

and use

W0 = I
W1 = W (I)
P1 = W0 −W1

. . .

Wk = W (Wk−1)

Pk = Wk−1 −Wk

. . .

PN =WN

This doesn’t incorporate the downsampling in the laplacian pyramid, but that
is an easy fix (exercises). Figure 9.12 compares different trend and detail
representations.

