CHAPTER 17

Simple Image Classifiers

There are two problems that lie at the core of image understanding. The
first is image classification, where we decide what class an image of a fixed size
belongs to. It’s usual to work with a collection of images of objects. These objects
will be largely centered in the image, and largely isolated. Each image will have
an associated object name, using a taxonomy of classes provided in advance. You
should think of catalog images of clothing or furniture. Another possible example is
mugshot photos or pictures of people on websites (where the taxonomy is names).
Judging by the amount of industry money pouring into image classification research,
there are valuable applications for solutions.

The second problem is object detection, where we try to find the locations
of objects of a set of classes in the image. So we might try to mark all cars, all
cats, all camels, and so on. As far as anyone knows, the right way to think about
object detection is that we search a collection of windows in an image, apply an
image classification method to each window, then resolve disputes between over-
lapping windows. How windows are to be chosen for this purpose is an active and
quickly changing area of research. Object detection is another problem receiving
tremendous attention from industry.

Neural networks have enabled spectacular progress in both problems. We now
have very accurate methods for large scale image classification and quite effective
and fast methods for object detection. This chapter describes the main methods
used in building these methods, and finishes with two fairly detailed examples of
simple image classification. The next chapter covers modern methods for image
classification and object detection.

17.1 IMAGE CLASSIFICATION

An instructive image classification dataset is the MNIST dataset of handwritten
digits. This dataset is very widely used to check simple methods. It was originally
constructed by Yann Lecun, Corinna Cortes, and Christopher J.C. Burges. You
can find this dataset in several places. The original dataset is at http://yann.lecun.
com/exdb/mnist/. The version I used was prepared for a Kaggle competition (so
I didn’t have to decompress Lecun’s original format). I found it at http://www.
kaggle.com/c/digit-recognizer.

Images have important, quite general, properties (Figure [71]). Images of
“the same thing” — in the case of MNIST, the same handwritten digit — can look
fairly different. Small shifts and small rotations do not change the class of an image.
Making the image somewhat brighter of somewhat darker does not change the class
of the image either. Making the image somewhat larger, or making it somewhat
smaller (then cropping or filling in pixels as required) does not change the class
either. This means that individual pixel values are not particularly informative —

415

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://www.kaggle.com/c/digit-recognizer
http://www.kaggle.com/c/digit-recognizer

17.1.1

Section 17.1 Image Classification 416

74 T T 4 £4 %4 1
232272 > 3221
33333 3333%
S 5 5 5 sfd‘_g‘f
77377 77 377

FIGURE 17.1: On the left, a selection of digits from the MNIST dataset. Notice how
images of the same digit can vary, which makes classifying the image demanding.
It is quite usual that pictures of “the same thing” look quite different. On the right,
digit images from MNIST that have been somewhat rotated and somewhat scaled,
then cropped fit the standard size. Small rotations, small scales, and cropping really
doesn’t affect the identity of the digit.

you can’t tell whether a digit image is, for example, a zero by looking at a given
pixel, because the ink might slide to the left or to the right of the pixel without
changing the digit. In turn, you should not expect applying logistic regression
directly to the pixel values to be particularly helpful. For MNIST, this approach
yields an error rate that is quite poor compared to better methods (try it - glmnet
can handle this).

Another important property of images is that they have many pixels. Building
a fully connected layer where every unit sees every pixel is impractical — each unit
might have millions of inputs, none of which is particularly useful. But if you think
of a unit as a device for constructing features, this construction is odd, because
it suggests that one needs to use every pixel in an image to construct a useful
feature. This isn’t consistent with experience. For example, if you look at the
images in Figure[I7.2] you will notice another important property of images. Local
patterns can be quite informative. Digits like 0 and 8 have loops. Digits like 4
and 8 have crossings. Digits like 1, 2, 3, 5 and 7 have line endings, but no loops
or crossings. Digits like 6 and 9 have loops and line endings. Furthermore, spatial
relations between local patterns are informative. A 1 has two line endings above one
another; a 3 has three line endings above one another. These observations suggest
a strategy that is a central tenet of modern computer vision: you construct features
that respond to patterns in small, localized neighborhoods; then other features look
at patterns of those features; then others look at patterns of those, and so on.

Pattern Detection by Convolution

For the moment, think of an image as a two dimensional array of intensities. Write
Ty, for the pixel at position u, v. We will construct a small array (a mask or
kernel) W, and compute a new image A from the image and the mask, using the

Section 17.1 Image Classification 417

Crossing i? i
N 4B sq

d
O A& h#H

T Line ending Loop Crossing

Line ending

Loop

FIGURE 17.2: Local patterns in images are quite informative. MNIST images, shown
here, are simple images, so a small set of patterns is quite helpful. The relative
location of patterns is also informative. So, for example, an eight has two loops,
one above the other. All this suggests a key strategy: construct features that respond
to patterns in small, localized neighborhoods; then other features that look at patterns
of those features; then others that look at patterns of those, and so on. Fach pattern
(here line-endings, crossings and loops) has a range of appearances. For example,
a line ending sometimes has a little wiggle as in the three. Loops can be big and
open, or quite squashed. The list of patterns isn’t comprehensive. The “?” shows
patterns that I haven’t named, but which appear to be useful. In turn, this suggests
learning the patterns (and patterns of patterns; and so on) that are most useful for
classification.

rule

Nij = ZL—k,j—kaz-
Kl

Here we sum over all k and [that apply to W; for the moment, do not worry
about what happens when an index goes out of the range of Z. This operation is
known as convolution. The form of the operation is important in signal processing
mathematics, but makes it quite hard to understand what convolution is good for.
We will generalize the idea.

Notice that if we flip WW in both directions to obtain M, we can write the new
image as

N = conv(Z,M)

where

N, = szle—i,l—j-

kl

In what follows, I will always apply this flip, and use the term “convolution” to refer
to the operator conv defined above. This isn’t consistent with the signal processing
literature, but is quite usual in the machine learning literature. Now reindex yet
again, by substituting v = k — i, v = [— j, and noticing that if « runs over the
range 0 to oo, so does u — i to get

Mj - § IiJru,jJr'uMu'u-
uv

This operation is linear. You should check that:

Section 17.1 Image Classification 418

Superimposed

2z bg 77 P X
> L=
S

" A

z

2N G ON

7
Z
=
=
=

"/

IS EYENEER
by) et
(

N

S B LY

b
1

R N el T

FIGURE 17.3: On the far left, some images from the MNIST dataset. Three kernels
appear on the center left; the small blocks show the kernels scaled to the size of
the image, so you can see the size of the piece of image the kernel is applied to. The
larger blocks show the kernels (mid-grey is zero; light is positive; dark is negative).
The kernel in the top row responds most strongly to a dark bar above a light bar;
that in the middle row responds most strongly to a dark bar to the left of a light
bar; and the bottom kernel responds most strongly to a spot. Center shows the
results of applying these kernels to the images. You will need to look closely to see
the difference between a medium response and a strong response. Center right
shows pizels where the response exceeds a threshold. You should notice that this
gives (from top to bottom): a horizontal bar detector; a vertical bar detector; and
a line ending detector. These detectors are moderately effective, but not perfect.
Far right shows detector responses (in black) superimposed on the original image
(grey) so you can see the alignment between detections and the image.

e if 7 is zero, then conv(Z, M) is zero;
e conv(kZ, M) = kconv(Z, M);
e and conv(Z 4+ J, M) = conv(Z, M) + conv(J, M).

The value of N;; is a dot-product, as you can see by reindexing M and the piece
of image that lies under M to be vectors. This view explains why a convolution
is interesting: it is a very simple pattern detector. Assume that u and v are unit
vectors. Then u - v is largest when u = v, and smallest when u = —v. Using the
dot-product analogy, for NV;; to have a large and positive value, the piece of image
that lies under M must “look like” M. Figure give some examples.

The proper model for conv is this. To compute the value of N at some
location, you take the window W of T at that location that is the same size as \/;
you multiply together the elements of M and W that lie on top of one another; and
you sum the results (Figure [T4). Thinking of this as an operation on windows
allows us to generalize in very useful ways.

In the original operation, we used a window at every location in Z, but we
may prefer to look at (say) a window at every second location. The centers of the
windows we wish to look at lie on a grid of locations in Z. The number of pixels
skipped between points on the grid is known as its stride. A grid with stride 1

Section 17.1 Image Classification 419

M
) X
(J X o
(J e
) X ‘—c
O
)
}o X ¢ e =
([2
o X o N

FIGURE 17.4: To compute the value of N at some location, you shift a copy of M to
lie over that location in I; you multiply together the non-zero elements of M and
T that lie on top of one another; and you sum the results.

consists of each spatial location. A grid with stride 2 consists of every second spatial
location in Z, and so on. You can interpret a stride of 2 as either performing conv
then keeping the value at every second pixel in each direction. Better is to think of
the kernel striding across the image — perform the conv operation as above, but
now move the window by two pixels before multiplying and adding.

The description of the original operation avoided saying what would happen if
the window at a location went outside Z. We adopt the convention that N contains
entries only for windows that lie inside Z. But we can apply padding to Z to ensure
that A has the size we want. Padding attaches a set of rows (resp. columns) to the
top and bottom (resp. left and right) of Z to make it a convenient size. Usually,
but not always, the new rows or columns contain zeros. By far the most common
case uses M that are square with odd dimension (making it much easier to talk
about the center). Assume Z is n, x n, and M is (2k + 1) x (2k + 1); if we pad
7 with k rows on top and bottom and k columns on each side, conv(Z, M) will be
Ng X Ny

Images are naturally 3D objects with two spatial dimensions (up-down, left-
right) and a third dimension that chooses a slice (R, G or B for a color image). This
structure is natural for representations of image patterns, too — two dimensions
that tell you where the pattern is and one that tells you what it is. The results
in Figure show a block consisting of three such slices. These slices are the
response of a pattern detector for a fized pattern, where there is one response for
each spatial location in the block, and so are often called feature maps.

We will generalize conv and apply it to 3D blocks of data (which I will call
blocks). Write Z for an input block of data, which is now 2 Xy x d. Two dimensions
— usually the first two, but this can depend on your software environment — are

Section 17.1 Image Classification 420

No padding Padding of 1 tblr
. F IR & &3
Stride 1 z o —>
5 —>
[[1
Stride 2 - -
B -

FIGURE 17.5: The effects of stride and padding on conv. On the left, conv without
padding accepts an I, places a 3 x 3 M on grid locations determined by the stride,
then reports values for wvalid windows. When the stride is 1, a 5 X 5 T becomes
a3 x3N. When the stride is 2, a 5 x 5 T becomes a 2 x 2 N'. The hatching
and shading show the window used to compute the corresponding value in N'. On
the right, conv with padding accepts an I, pads it (in this case, by one row top
and bottom, and one column left and right), places a 3 x 3 M on grid locations in
the padded result determined by the stride, then reports values for valid windows.
When the stride is 1, a 5 x 5 T becomes a 5 x 5 N'. When the stride is 2, a 5 X 5
T becomes a 3 x 3 N. The hatching and shading show the window used to compute
the corresponding value in N .

spatial and the third chooses a slice. Write M for a 3D kernel, which is k;, x k, x d.
Now choose padding and a stride. This determines a grid of locations in the spatial
dimensions of Z. At each location, we must compute the value of A'. To do so, take
the 3D window W of Z at that location that is the same size as N; you multiply
together the elements of M and W that lie on top of one another; and you sum the
results (Figure [74). This sum now goes over the third dimension as well. This
produces a two dimensional V.

To make this operation produce a block of data, use a 4D block of kernels.
This kernel block consists of D kernels, each of which is a k, x k;, x d dimensional
kernel. If you apply each kernel as in the previous paragraph to an = X y X d
dimensional Z, you obtain an X x Y x D dimensional block N, as in Figure
What X and Y are depends on kg, k,, the stride and the padding. A convolutional
layer takes a kernel block and a bias vector of D bias terms. The layer applies the
kernel block to an input block (as above), then adds the corresponding bias value
to each slice.

A convolutional layer is a very general and very useful idea. A fully connected
layer is one form of convolutional layer. You can build a simple pattern detector
out of a convolutional layer followed by a ReLU layer. You can build a linear map
that reduces dimension can be built out of a convolutional layer.

Section 17.1 Image Classification 421

Kernel block 2

Feature
map 2

NN
[\ X

Feature
map 1

Kernel block 1

FIGURE 17.6: On the left, two kernels (now 3D, as in the text) applied to a set of
feature maps produce one new feature map per kernel, using the procedure of the

text (the bias term isn’t shown). Abstract this as a process that takes an x X y x d
block to an X xY x D block (as on the right).

Useful Fact: 17.1 Definition: Convolutional Layer

A convolutional layer makes 3D blocks of data from 3D blocks of data,

using a stride, padding, a block of kernels and a vector of bias terms.
The details are in the text.

Remember this: A fully connected layer can be thought of as a convo-
lutional layer followed by a ReLU layer. Assume you have an x Xy X d block
of data. Reshape this to be a (xyd) x 1 x 1 block. Apply a convolutional
layer whose kernel block has size (xyd) x 1 x D, and then a ReLU. This pair
of layers produces the same result as a fully-connected layer of D units.

Section 17.1 Image Classification 422

Remember this: Take the output of a convolutional layer and apply
a ReLU. First, think about what happens to one particular piece of image
the size of one particular kernel. If that piece is “sufficiently similar” to
the kernel, we will see a positive response at the relevant location. If the
piece is too different, we will see a zero. This is a pattern detector as in
Figure [I7.3. What “sufficiently similar” means is tuned by changing the
bias for that kernel. For example, a bias term that is megative with large
magnitude means the tmage block will need to be very like the kernel to
get a non-zero response. This pattern detector is (basically) a unit — apply
a ReLU to a linear function of the piece of image, plus a constant. Now
it should be clear what happens when all kernels are applied to the whole
image. Fach pizel in a slice represents the result of a pattern detector
applied to the piece of image corresponding to the pixzel. Fach slice of the
resulting block represents the result of a different pattern detector. The
elements of the output block are often thought of as features.

Remember this: There isn’t a standard meaning for the term con-
volutional layer. I'm using one of the two that are widely used. Software
implementations tend to use my definition. Very often, research papers use
the alternative, which is my definition followed by a non-linearity (almost
always a ReLU). This is because convolutional layers mostly are followed
by ReLU’s in research papers, but it is more efficient in software implemen-
tations to separate the two.

Different software packages use different defaults about padding. One default
assumes that no padding is applied. This means that a kernel block of size k; x
ky x d x D applied to a block of size x x y x d with stride 1 yields a block of size
(ng — ks + 1) X (ny — ky + 1) x D (check this with a pencil and paper). Another
assumes that the input block is padded with zeros so that the output block is
Ng X Ny X D.

Remember this: In Figure [I7.3, most values in the output block
are zero (black pizels in that figure). This is typical of pattern detectors
produced in this way. This is an experimental fact that seems to be related
to deep properties of images.

Section 17.1 Image Classification 423

Remember this: A kernel block that is 1 x 1 X n, x D is known as
a 1 x 1 convolution. This is a linear map in an interesting way. Think
of the input and output blocks as sets of column vectors. So the input block
is a set of ng X ny column vectors, each of which has dimension n, x 1
(i.e. there is a column vector at each location of the input block). Write
iy, for the vector at location w, v in the input block, and 0y, for the vector
at location u, v in the output block. Then there is a D X n, matric M so
that the 1 x 1 convolution maps iy, to

Ouy = Miyy.

This can be extremely useful when the input has very high dimension, be-
cause M can be used to reduce dimension and is learned from data.

17.1.2 Convolutional Layers upon Convolutional Layers

Convolutional layers take blocks of data and make blocks of data, as do ReLLU
layers. This suggests the output of a convolutional layer could be passed through a
ReLLU, then connected to another convolutional layer, and so on. Doing this turns
out to be an excellent idea.

Think about the output of the first convolutional layer. Each location receives
inputs from pixels in a window about that location. The output of the ReLU, as
we have seen, forms a simple pattern detector. Now if we put a second layer on
top of this, each location in the second layer receives inputs from first layer values
in a window about that location. This means that locations in the second layer
are affected by a larger window of pixels than those in the first layer. You should
think of these as representing “patterns of patterns”. If we place a third layer on
top of the second layer, locations in that third layer will depend on an even larger
window of pixels. A fourth layer will depend on a yet larger window, and so on.
The key point here is that we can choose the patterns by learning what kernels will
be applied at each layer.

The receptive field of a location in a data block (or, equivalently, a unit)
is the set of image pixels that affect the value of the location. Usually, all that
matters is the size of the receptive field. The receptive field of a location in the
first convolutional layer will be given by the kernel of that layer. Determining the
receptive field for later layers requires some bookkeeping (among other things, you
must account for any stride or pooling effects).

If you have several convolutional layers with stride 1, then each block of data
has the same spatial dimensions. This tends to be a problem, because the pixels
that feed a unit in the top layer will tend to have a large overlap with the pixels that
feed the unit next to it. In turn, the values that the units take will be similar, and
so there will be redundant information in the output block. It is usual to try and

Section 17.2 Two Practical Image Classifiers 424

op

[}

Pooling 2x2s2 Pooling 3x3s2

FIGURE 17.7: In a pooling layer, pooling units compute a summary of their inputs,
then pass it on. The most common case is 2z2, illustrated here on the left. We tile
each feature map with 2x2 windows that do not overlap (so have stride 2). Pooling
units compute a summary of the inputs (usually either the maz or the average),
then pass that on to the corresponding location in the corresponding feature map of
the output block. As a result, the spatial dimensions of the output block will be about
half those of the input block. On the right, the common alternative of pooling in
overlapping 3r3 windows with stride 2.

deal with this by making blocks get smaller. One natural strategy is to occasionally
have a layer that has stride 2.

An alternative strategy is to use pooling. A pooling unit reports a summary
of its inputs. In the most usual arrangement, a pooling layer halves each spatial
dimension of a block. For the moment, ignore the entirely minor problems presented
by a fractional dimension. The new block is obtained by pooling units that pool
a window at each feature map of the input block to form each feature map of the
output block. If these units pool a 2 x 2 window with stride 2 (ie they don’t overlap),
the output block is half the size of the input block. We adopt the convention that
the output reports only valid input windows, so that this takes an x x y x d block
to an floor(z/2) x floor(y/2) x d block. So, as Figure [T.7 shows, a 5 x 5 x 1 block
becomes a 2 x 2 x 1 block, but one row and one column are ignored. A common
alternative is pooling a 3 x 3 window with a stride of 2; in this case, a 5 x 5 x 1 block
becomes a 2 x 2 x 1 block without ignoring rows or columns. Each unit reports
either the largest of the inputs (yielding a max pooling layer) or the average of
its inputs (yielding an average pooling layer).

17.2 TWO PRACTICAL IMAGE CLASSIFIERS

We can now put together image classifiers using the following rough architecture.
A convolutional layer receives image pixel values as input. The output is fed to
a stack of convolutional layers, each feeding the next, possibly with ReLU layers
intervening. There are occasional max-pooling layers, or convolutional layers with
stride 2, to ensure that the data block gets smaller and the receptive field gets
bigger as the data moves through the network. The output of the final layer is fed
to one or more fully connected layers, with one output per class. Softmax takes
these outputs and turns them into class-probabilities. The whole is trained by batch

17.2.1

Section 17.2 Two Practical Image Classifiers 425

Positive

FIGURE 17.8: The mean of MNIST training images is shown on the left, surrounded
by a black frame so that you can resolve it against the background. On the right,
the positive (top) and negative (bottom) components of the difference between
mean and image for some training images. Lighter pizels have larger magnitude.
Notice the blob of small positive values where there tends to be ink, and the strong
negative values where this particular image has ink. This gives the network some
information about where ink is expected to lie in general images, which seems to
help training in practice.

gradient descent, or a variant, as above, using a log-loss.

Notice that different image classification networks differ by relatively straight-
forward changes in architectural parameters. Mostly, the same thing will happen
to these networks (variants of batch gradient descent on a variety of costs; dropout;
evaluation). In turn, this means that we should use some form of specification
language to put together a description of the architecture of interest. Ideally, in
such an environment, we describe the network architecture, choose an optimiza-
tion algorithm, and choose some parameters (dropout probability, etc.). Then the
environment assembles the net, trains it (ideally, producing log files we can look
at) and runs an evaluation. The tutorials mentioned in section [[6.4.T] each contain
examples of image classifiers for the relevant environments. In the examples shown
here, I used Matconvnet, because I am most familiar with Matlab.

Example: Classifying MNIST

MNIST images have some very nice features that mean they are a good case to start
with. Our relatively simple network architecture accepts images of a fixed size.
This property is quite common, and applies to most classification architectures.

Section 17.2 Two Practical Image Classifiers 426

/ Data blocks

|'] I & &

1x1x500 1x1x500 1x1x10 1x1x10
4x4x50
L 8x8x50
12x12x20
- 24x24x20
28x28x1
Network layers
e} Q @)
£ z 5 g g g
=] = g < = ©
EN ~ el
o 3 B4 g) 3 = Ed
o 2P |2 s z = z]
—_ N [[= W 1
I e 4 > = (=3
53 0 5, [Tn <
S 2 S z

Receptive fields

5x5 6x6 14x14 16x16 Whole image Whole image Whole image

FIGURE 17.9: Three different representations of the simple network used to classify
MNIST digits for this example. Details in the text.

This isn’t a problem for MNIST, because all the MNIST images have the same
size. Another nice feature is that pixels are either ink pixels or paper pixels — there
are few intermediate values, and none of them are meaningful or helpful. In more
general images, Z and 0.9 x Z show the same thing, just at different brightnesses.
This doesn’t happen for MNIST images. Yet another nice feature is that there is
a fixed test-train split that everyone uses, so that comparisons are easy. Without
a fixed split, the difference in performance between two networks might be due to
random effects, because the networks see different test sets.

Much of the information in an MNIST image is redundant. Many pixels
are paper pixels for every (or almost every) image. These pixels should likely
be ignored by every classifier, because they contain little or no information. For
other pixels, the value of the pixel is less important than how different the pixel is
from the expected value at that location. Experience shows that it is surprisingly
hard for neural networks to learn from heavily redundant image data. It is usual
to preprocess images to remove some redundancies. For MNIST, the usual is to
subtract the mean of the training images from the input image. Figure shows
how doing so seems to enhance the information content of the image.

Figure shows the network used for this example. This network is a

Section 17.2 Two Practical Image Classifiers 427

objective topterr top5err
T T T

0.3

0.012

—O— train @ —©6— train —O— train
—O—val ‘ —O—val —O—val

0.008 ‘
- 0.006 ‘
0.004 - ‘

0.002 - ‘

epoch

FIGURE 17.10: This figure shows the results of training the network of Figure [17.9
on the MNIST training set. Loss, top-1 error and top-5 error for training and
validation sets, plotted as a function of epoch for the network of the text. The loss
(recorded here as “objective”) is the log-loss. Note: the low validation error; the gap
between train and validation error; and the very low top-5 error. The validation
error is actually quite high for this dataset — you can find a league table at http://
rodrigob.github.io/ are_we_there_yet/ build/ classification_datasets_results.html.

standard simple classification network for MNIST, distributed with Matconvnet.
There are three different representations of the network here. The network layers
representation, in the center of the figure, records the type of each layer and the
size of the relevant convolution kernels. The first layer accepts the image which is a
28 x 28 x 1 block of data (the data block representation), and applies a convolution.
By convention, “conv 5 x 5 x 1 x 20” means a convolution layer, with a 20 different
kernels each 5 x 5 x 1. The effects of some of the learned kernels in this layer are
visualized in Figure I7.111

In the implementation I used, the convolution was not padded so that the
resulting data block was 24 x 24 x 20 (check that you know why this is correct). A
value in this data block is computed from a 5 x 5 window of pixels, so the receptive
field is 5 x 5. Again, by convention, every convolutional layer has a bias term, so
the total number of parameters in the first layer is (5 x 5 x 1) x 20+ 20 (check this
statement, too). The next layer is a 2 x 2 max pooling layer, which again is not
padded. This takes a 24 x 24 x 20 block and produces a 12 x 12 x 20 block. The
receptive field for values in this block is 6 x 6 (you should check this with a pencil
and paper drawing; it’s right).

Another convolutional layer and another max-pooling layer follow, reducing
the data to a 4 x 4 x 50 block. Every value in this block is potentially affected by
every image pixel, and this is true for all following blocks. Yet another convolutional
layer reduces this to a 1 x 1 x 500 block (again, where every value is potentially

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

17.2.2

Section 17.2 Two Practical Image Classifiers 428

FIGURE 17.11: Four of the 20 kernels in the first layer of my trained version of the
MNIST network. The kernels are small (5 X 5) and have been blown up so you
can see them. The outputs for each kernel on a set of images are shown above the
kernel. The output images are scaled so that the largest value over all outputs is
light, the smallest is dark, and zero is mid grey. This means that the images can be
compared by eye. Notice that (rather roughly) the far left kernel looks for contrast;
center left seems to respond to diagonal bars; center right to vertical bars; and
far right to horizontal bars.

affected by every pixel in the image). That goes through a ReLU (outputs visualized
in Figure [TI2). You should think of the result as a 500 dimensional feature
vector describing the image, and the convolutional layer and softmax that follow
are logistic regression applied to that feature vector.

I trained this network for 20 epochs using tutorial code circulated with Mat-
convnet. Mini-batches are pre-selected so that each training data item is touched
once per epoch, so an epoch represents a single pass through the data. It is common
in image classification to report loss, top-1 error and top-5 error. Top-1 error is
the frequency that the correct class has the highest posterior. Top-5 error is the
frequency that the correct class appears in the five classes with largest posterior.
This can be useful when the top-1 error is large, because you may observe improve-
ments in top-5 error even when the top-1 error doesn’t change. Figure shows
the loss, top-1 error and top-5 error for training and validation sets plotted as a
function of epoch. This network has a low error rate, so of the 10, 000 test examples
there are only 89 errors, which are shown in Figure

Example: Classifying CIFAR-10

CIFAR-10 is a dataset of 32 x 32 color images in 10 categories, collected by Alex
Krizhevsky, Vinod Nair, and Geoffrey Hinton. It is often used to evaluate image
classification algorithms. There are 50, 000 training images and 10, 000 test images,
and the test-train split is standard. Images are evenly split between the classes.
Figure I7.14] shows the categories, and examples from each category. There is no
overlap between the categories (so “automobile” consists of sedans, etc. and “truck”
consists of big trucks). You can download this dataset from https://www.cs.toronto.
edu/kriz/cifar.html.

Figure shows the network used to classify CIFAR-10 images. This net-
work is again a standard classification network for CIFAR-10, distributed with
Matconvnet. Again, I have shown the network in three different representations.
The network layer representation, in the center of the figure, records the type of

https://www.cs.toronto.edu/∼kriz/cifar.html
https://www.cs.toronto.edu/∼kriz/cifar.html

Section 17.2 Two Practical Image Classifiers 429

33)373035233
9 A7303317332
Z
2

23398353

N o0

mf-o -0

W N -d

™ M- -D

™ N ~D o)

L O\ N[O
(PR
N W
~J =0 [(¥
Dl YN N|A
WY ~|W
Qv e N |V
Y\ Y NENY ¢}

peddabatba
bbbddrzadb

(TY B Y TR TR

NN

Yo Y b
ST TDEELE

Freegse8silaedaergaydy

FIGURE 17.12: Visualizing the patterns that the final stage ReLU’s respond to for
the simple CIFAR example. Fach block of images shows the images that get the
largest output for each of 10 ReLU’s (the ReLU’s were chosen at random from the
500 available). Notice that these ReLU outputs don’t correspond to class — these
outputs go through a fully connected layer before classification — but each ReLU
are clearly responds to a pattern, and different ReLU’s respond more strongly to
different patterns.

06

G M5IN N
E TR
L &g N~ 0
L4t v\ ~a |0
Ll NN W

w)< o
0

[-]

each layer and the size of the relevant convolution kernels. The first layer accepts
the image which is a 32 x 32 x 3 block of data (the data block representation), and
applies a convolution.

In this network, the convolution was padded so that the resulting data block
was 32 X 32 x 32. You should check you agree with these figures, and you can tell by
how much the image needed to be padded to achieve this (a drawing might help). A
value in this data block is computed from a 5 x 5 window of pixels, so the receptive
field is 5 x 5. Again, by convention, every convolutional layer has a bias term, so
the total number of parameters in the first layer is (5 x 5 x 3) x 32 4+ 32. The next
layer is a 3 x 3 max pooling layer. The notation 352 means that the pooling blocks

G¢Asal1Bq 5191210151 216111819]
16834873 |51 11615121415171319]
Y0ABCEO®U | 716151014131 0191114,]
53345 LDATE 3141419131 1101715138|
1780538 ¢ 12191014181 0151319138]
ZT11923g%1 12121813 141213101717]
13k5840%8% | 1121715101416131813|
ADAPIDY L 181919191 71712181615]
N2ZPRLESS 19121218171316101 8|

FIGURE 17.13: Left: All 89 errors from the 10000 test examples in MNIST and
right the predicted labels for these examples. True labels are mostly fairly clear,
though some of the misclassified digits take very odd shapes.

Section 17.2 Two Practical Image Classifiers 430

Airplane
Automobile

Bird

E}
E

FIGURE 17.14: The CIFAR-10 image classification dataset consists of 60, 000 im-
ages, in a total of 10 categories. The images are all 32232 color images. This figure
shows 20 images from each of the 10 categories and the labels of each category. On
the far right, the mean of the images in each category. I have doubled the bright-
ness of the means, so you can resolve color differences. The per-category means are
different, and suggest that some classes look like a blob on a background, and others
(eg ship, truck) more like an outdoor scene.

32x32x3 Data blocks
32x32x32

/ / 16x16x32

- — 16x16x32
16x16x32 16x16x32

T 8x8x32 8x8x64 8x8x64
4x4x64
1x1x10
Ix1x64 1x1x64 1x1x10

<
all
<

7sg [oody

N .

aQ Q Q @) Q
z] >]] I
g g E rARE 2 z
w L=} o =X v & =
RS o bz g £ ZE P
o w [=]) > = N
= a N D B &
sl® g 3 A z
~ S N N S
Network layers
5 7 15 15 19 35 35 43 67 67 67 67

Receptive fields

FIGURE 17.15: Three different representations of the simple network used to classify
CIFAR-10 images for this example. Details in the text.

Section 17.2 Two Practical Image Classifiers 431

objective
T T 0.12

—O— train ‘_f —O— train —O— train
—O—val 05 T —O—val | | —O—val
1 0.1 f g
0.45 %l b

topierr top5err

epoch epoch

FIGURE 17.16: This figure shows the results of training the network of Figure[I7.17]
on the CIFAR-10 training set. Loss, top-1 error and top-5 error for training and
validation sets, plotted as a function of epoch for the network of the text. The loss
(recorded here as “objective”) is the log-loss. Note: the low validation error; the gap
between train and validation error; and the very low top-5 error. The validation
error is actually quite high for this dataset — you can find a league table at http://
rodrigob.github.io/ are_we_there_yet/ build/ classification_datasets_results.html.

have a stride of 2, so they overlap. The block is padded for this pooling layer,
by attaching a single column at the right and a single row at the bottom to get a
33 x 33 x 32 block. With this padding and stride, the pooling takes 33 x 33 x 32
block and produces a 16 x 16 x 32 block (you should check this with a pencil and
paper drawing; it’s right). The receptive field for values in this block is 7 x 7 (you
should check this with a pencil and paper drawing; it’s right, too).

The layer labelled “Apool 3s2” is an average pooling layer which computes
an average in a 3 X 3 window, again with a stride of 2. The block is padded before
this layer in the same way the block before the max pooling layer was padded.
Eventually, we wind up with a 64 dimensional feature vector describing the image,
and the convolutional layer and softmax that follow are logistic regression applied
to that feature vector.

Just like MNIST, much of the information in a CIFAR-10 image is redundant.
It’s now somewhat harder to see the redundancies, but Figure [Z.14] should make
you suspect that some classes have different backgrounds than others. Figure [7.14]
shows the class mean for each class. There are a variety of options for normalizing
these images (more below). For this example, I whitened pixel values for each pixel
in the image grid independently (procedure [[7.I] which is widely used). Whitened
images tend to be very hard for humans to interpret. However, the normalization

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

Section 17.2 Two Practical Image Classifiers

Airplane
Automobile

Bird

Dog
Frog
Horse
Ship

Truck

432

FIGURE 17.17: Some of the approximately 2000 test examples misclassified by the
network trained in the text. FEach row corresponds to a category. The images
in that row belong to that category, but are classified as belonging to some other
category. At least some of these images look like “uncommon” views of the object
or “strange” instances — it’s plausible that the network misclassifies images when

the view is uncommon or the object is a strange instance of the category.

involved deals with changes in overall image brightness and moderate shifts in color

rather well, and can significantly improve classification.

Procedure: 17.1 Simple image whitening

At training time: Start with N training images Z(Y. We assume
these are 3D blocks of data. Write lev)w for the u, v, w’th location in
the 7’th image. Compute M and S, where the u, v, w’th location in
each is given by

1)
Myvw = E:’L]v
. Fiu,s@w — M,
uvw — N

Choose some small number € to avoid dividing by zero. Now the i’th
whitened image, W, has for its u, v, w’th location

Wz%)w = (Iq(;v)w - Muvw)/(suvw + 6)

Use these whitened images to train.
At test time: For a test image 7, compute YW which has for its u, v,
w’th location

Wowm = (Tuvw - Muvw)/(su'uw + 6)

and classify that.

17.2.3

Section 17.2 Two Practical Image Classifiers 433

Airplane
¥ Automobile

Bird

Dog
Frog
Horse
| Ship

Truck

FIGURE 17.18: Some of the approximately 2000 test examples misclassified by the
network trained in the text. Each row corresponds to a category. The images in
that row are classified as belonging to that category, but actually belong to another.
At least some of these images look like “confusing” views — for example, you can
find birds that do look like aircraft, and aircraft that do look like birds.

I trained this network for 20 epochs using tutorial code circulated with Mat-
convnet. Mini-batches are pre-selected so that each training data item is touched
once per epoch, so an epoch represents a single pass through the data. It is common
in image classification to report loss, top-1 error and top-5 error. Top-1 error is
the frequency that the correct class has the highest posterior. Top-5 error is the
frequency that the correct class appears in the five classes with largest posterior.
This can be useful when the top-1 error is large, because you may observe improve-
ments in top-5 error even when the top-1 error doesn’t change. Figure shows
the loss, top-1 error and top-5 error for training and validation sets plotted as a
function of epoch. This classifier misclassifies about 2000 of the test examples, so
it is hard to show all errors. Figure [7.17 shows examples from each class that are
misclassified as belonging to some other class. Figure shows examples that
are that are misclassified into each class.

The phenomenon that ReLLU’s are pattern detectors is quite reliable. Fig-
ure shows the 20 images that give the strongest responses for each of 10
ReLU’s in the final ReLU layer. These ReLU’s clearly have a quite strong theory
of a pattern, and different ReLLU’s respond most strongly to quite different pat-
terns. More sophisticated visualizations search for images that get the strongest
response from units at various stages of complex networks; it’s quite reliable that
these images show a form of order or structure.

Quirks: Adversarial Examples

Adversarial examples are a curious experimental property of neural network image
classifiers. Here is what happens. Assume you have an image x that is correctly
classified with label [. The network will produce a probability distribution over
labels P(L|x). Choose some label k that is not correct. It is possible to use modern

Section 17.2 Two Practical Image Classifiers 434

FIGURE 17.19: Visualizing the patterns that the final stage ReL U’s respond to for the
simple CIFAR example. Each block of images shows the images that get the largest
output for each of 10 ReLU’s (the ReLU’s were chosen at random from the 6/
available in the top ReLU layer). Notice that these ReLU outputs don’t correspond
to class — these outputs go through a fully connected layer before classification — but
each ReLU are clearly responds to a pattern, and different ReLU’s respond more
strongly to different patterns.

optimization methods to search for a modification to the image dx such that

0x is small
and
P(k|x + 0x) is large.

You might expect that dx is “large”; what is surprising is that mostly it is so tiny
as to be imperceptible to a human observer. The property of being an adversar-
ial example seems to be robust to image smoothing, simple image processing, and
printing and photographing. The existence of adversarial examples raises the fol-
lowing, rather alarming, prospect: You could make a template that you could hold
over a stop sign, and with one pass of a spraypaint can, turn that sign into some-
thing that is interpreted as a minimum speed limit sign by current computer vision
systems. I haven’t seen this demonstration done yet, but it appears to be entirely
within the reach of modern technology, and it and activities like it offer significant
prospects for mayhem.

What is startling about this behavior is that it is exhibited by networks that
are very good at image classification, assuming that no-one has been fiddling with
the images. So modern networks are very accurate on untampered pictures, but
may behave very strangely in the presence of tampering. One can (rather vaguely)
identify the source of the problem, which is that neural network image classifiers
have far more degrees of freedom than can be pinned down by images. This ob-
servation doesn’t really help, though, because it doesn’t explain why they (mostly)
work rather well, and it doesn’t tell us what to do about adversarial examples.

Section 17.2 Two Practical Image Classifiers 435

There have been a variety of efforts to produce networks that are robust to adver-
sarial examples, but evidence right now is based only on experiment (some networks
behave better than others) and we are missing clear theoretical guidance.

Section 17.3 You should 436

17.3 YOU SHOULD
17.3.1 remember these definitions:

17.3.2 remember these terms:

1 x 1 convolution 422
eceptive fieldo oo 422
ingl 423

17.3.3 remember these facts:

[Definition: Convolutional Layed oo v v i i 420
Making fully connected layers with gggggm;jgﬁ]al avers 420
(Convolutional layer + RelLU=Pattern detectod 421

ere are two canings of “ itional layer” 421

17.3.4 remember these procedures:

17.3.5 be able to:

e Explain what convolutional layers do.

Compute the size of a data block resulting from applying a convolutional layer
with given size and stride to a block with given padding.

Explain what a 1 x 1 convolution does and why it might be useful.

Train and run a simple image classifier in your chosen framework.

Explain why pre-processing data might help a neural network based classifier.
Explain what an adversarial example is.

Section 17.3 You should 437

PROGRAMMING EXERCISES

17.1.

17.2.

17.3.

17.4.

Download tutorial code for a simple MNIST classifier for your chosen program-

ming framework, and train and run a classifier using that code. You should

be able to do this exercise without access to a GPU.

Now reproduce the example of Section [I7.2.1] in your chosen programming

framework. The section contains enough detail about the structure of the net-

work for you to build that network. This isn’t a super good classifier; the

point of the exercise is being able to translate a description of a network to

an instance. Use the standard test-train split, and train with straightforward

stochastic gradient descent. Choose a minibatch size that works for this exam-

ple and your hardware. Again, you should be able to do this exercise without

access to a GPU.

(a) Does using momentum improve training?

(b) Does using dropout in the first two layers result in a better performing
network?

(c) Modify this network architecture to improve performance. Reading ahead
will suggest some tricks. What works best?

Download tutorial code for a simple CIFAR-10 classifier for your chosen pro-

gramming framework, and train and run a classifier using that code. You

might very well be able to do this exercise without access to a GPU.

Now reproduce the example of Section in your chosen programming

framework. The section contains enough detail about the structure of the net-

work for you to build that network. This isn’t a super good classifier; the

point of the exercise is being able to translate a description of a network to

an instance. Use the standard test-train split, and train with straightforward

stochastic gradient descent. Choose a minibatch size that works for this exam-

ple and your hardware. Again, you might very well be able to do this exercise

without access to a GPU.

(a) Does using momentum improve training?

(b) Does using dropout in the first two layers result in a better performing
network?

(c) Modify this network architecture to improve performance. Reading ahead
will suggest some tricks. What works best?

