21

CHAPTER 2

Upsampling, Smoothing and
Downsampling

IMAGES AS SAMPLED FUNCTIONS

Your first encounter with an image as something to compute with (rather than look
at) is likely as an array for an intensity image, or set of three arrays for a color
image. Knowing how the image ended up in this form is important if you want to
interpret it. A quite detailed model of the geometry and physics underlying images
appears in Part X. A simple model will have to do for the moment.

The image you see as three arrays starts as a spectral energy field — Power P
moving through space. This power is a function of position in 3D X, direction w,
time ¢, and wavelength A, so you can write P(X,w,t, \). This power is created by
light leaving light sources, reflecting from surfaces, and eventually arriving at the
entrance to the camera (Figure 2.1). This is usually but not always a lens. Various
processes in lens and camera map some of the light that arrives to some sensor at
the back of a camera. The sensor is made up of a grid of receptors, each of which
transduces the energy that arrives into a number (or some numbers). Each receptor
on the sensor corresponds to a single pizel (or spatial location) in the array that is
read from the camera.

The lens arranges that light arriving at x on the sensor all arrived from one
point on a surface in 3D (X in Figure 2.1). At that point, the sensor collects power
P for some period At, then passes the result on to the camera electronics. The
sensor responds to energy PAt, so collecting more power for a shorter period or
less power for a longer period will result in indistinguishable results. The value

Sensor Light source 9

gt) /

Lens

FIGURE 2.1: A high-level model of imaging. Light leaves light sources and reflects
from surfaces. Eventually, some light arrives at a camera and enters a lens system.
Some of that light arrives at a photosensor inside the camera.

18

Section 2.1 Images as Sampled Functions 19

Spectral energy density Pixel values

FIGURE 2.2: Because each pixel in the sensor averages over a small range of direc-
tions and positions, the process mapping the input spectral energy distribution to
pizel values can be thought of as sampling. On the left, is a representation of the
energy distribution as a continuous function of position. The value reported at each
pizel is the value of this function at the location of the pizel (right).

of the pixel at i, j on the grid is a sample of a function of position (Figure 2.2).
The vast majority of sensors in current use are linear, so doubling the amount of
light arriving at the camera while fixing At will double the output. Linear image
sensors present problems. The dynamic range (ratio of largest value to smallest
value) of spectral energy fields can be startlingly large (1e6: 1 is often cited).
Simple consumer cameras report 8 bits (256 levels) of intensity per channel. A
picture from a linear camera that reports 8 bits per channel will look strange,
because even relatively simple scenes have a higher dynamic range than 255. One
can build cameras that can report significantly higher dynamic ranges, but this
takes work (Chapter 15.10). If the camera has a linear response and a dynamic
range of 255, either a lot of the image will be too dark to be resolved, or much
of the image will be at the highest value, or both will happen. This is usually
fixed by ensuring that the number digitized by the camera isn’t linearly related to
brightness. Internal electronics ensures that the camera response function mapping
the intensity arriving at the sensor to the reported pixel value looks something
like Figure 2.3. This increases the response to dark values, and reduces it to light
values, so that the overall distribution of pixel values is familiar. Typically, the
function used approximates the response of film (which isn’t linear) because people
are familiar with that.

2.1.1 Color Images

Humans see color by comparing the response of different kinds of photoreceptor
at nearby locations (Chapter 28). The main difference between these kinds of
photoreceptor is in the sensitivity of the sensor with wavelength. Roughly, one
type of sensor responds more strongly to longer wavelengths, another to medium
wavelengths, and a third to shorter wavelengths (there are other kinds of sensor,
and other differences).

Cameras parallel this process. The sensors used for the R (or red) layer of an

20 Chapter 2 Upsampling, Smoothing and Downsampling

1.01

0.8 1

0.6 1

0.4 1

0.2 1

m—— Optura981111
=== agfapan-apx-400CD
0.0 1 === agfa-scala-200xPulll

Camera response, normalized

0.0 0.2 0.4 0.6 0.8 1.0

PAt, normalized

FIGURE 2.3: Camera response functions for three different cameras, plotted
from the comprehensive dataset available at https: // cave. cs. columbia. edu/
reposttory/DoRF. The horizontal azis is the “input” — the PAt observed by the
camera, scaled to 0 —1. The vertical axis is the “output” — the response of the cam-
era, again scaled to 0 —1. Notice that locations that would be quite dark for a linear
sensor will be lighter; but as the linear sensor gets very bright, the output recorded
by the camera grows slowly. This means that the range of outputs is smaller than
the range of inputs, which is helpful for practical cameras. This response function is
typically located deep in the camera’s electronics. Typical consumer cameras apply
a variety of transforms before reporting an image, though one can often persuade
cameras to produce an untransformed, linear response image (a RAW file).

Multiple sensors Mosaiced Sensor

- m _>.
'Split"

FIGURE 2.4: There are two main ways to obtain color images. One can (as in left)
build a multiced camera with three imaging sensors. Each has a different response
to wavelengths. The cheaper and lighter alternative is to use one imaging sensor
(right) but have a mosaic of pizels with different responses. This can be achieved
by placing a small filter on each sensor location. Far right shows one traditional
such pattern of filters, a Bayer pattern.

Bayer pattern

RGB image respond more strongly to longer wavelengths; for the G (or green) layer,
to medium wavelengths; and the B (or blue) to shorter wavelengths. Cameras must

Section 2.2 Upsampling and Image Interpolation 21

FIGURE 2.5: On the left, a function interpolating a 2 X 2 image using nearest neigh-
bors. The dashed lines pass through grid points, and the dotted lines are halfway
between grid points. The function is zero away from the four boxes shown. Image
values are shown as filled circles. On the right, a bilinear interpolate of the same
data.

be engineered to produce the response of three different types of sensor at the same
place. The usual strategy is to use one imaging sensor, and arrange that different
pixels respond differently to wavelength. Typically, there are three types of pixel (R,
G, and B), interleaved in a mosaic (Figure 2.4). This means that at many locations
the camera does not measure R (or G, or B) response, and it must reconstruct this
response from the value at nearby pixels. Generally, mosaic patterns have more
G pixels than R or B pixels. This is because G pixels are sensitive to a wider
range of visible wavelengths than R and B pixels, and so the reconstruction yields
better results. Regular mosaic patterns can create effects in images, and there
are demosaicing algorithms to remove these effects. An alternative is to use three
imaging sensors and arranging for each sensor to receive the same light (lenses,
mirrors, that sort of thing). Such multiced cameras tend to be larger, heavier and
more expensive than single sensor cameras.

Remember this: Cameras consist of lens systems (which arrange that
light leaving a point on a surface arrives at a sensor), sensors (which sample
the amount of arriving energy) and electronics (which map the sampled
values into the numbers reported by the camera). Most cameras have linear
sensors, but apply a camera response function to the sensor outputs. Color
images can be obtained by arranging that three different sensors see the
same light (heavy and expensive), or using a mosaic pattern of filters on a
single sensor (cheap, but presenting reconstruction problems).

2.2 UPSAMPLING AND IMAGE INTERPOLATION

To upsample an image you increase the number of pixels in a grid. Some cases are
easy. To go from, say a 100 x 100 image to a 200 x 200 image, you could simply

22 Chapter 2 Upsampling, Smoothing and Downsampling

4x4 8x8 Nearest neighbor

Bilinear

Bicubic

FIGURE 2.6: The choice of interpolate when upsampling can make a real difference.
Top left shows a detail from a picture. I have upsampled the image, then cropped
the upsamples (showing the top left corner) and zoomed them so you can see the
details. Center column shows a cropped 4x4 upsample using three different in-
terpolation methods and right column shows 8x8 upsamples by various methods.
Notice the significant blockiness in nearest neighbor interpolates (top row). Bi-
linear interpolates (second row) are much better, and bicubic interpolates (third
row) are different to bilinear interpolates, but not a major improvement. Image
credit: Figure shows my photograph of a facade in Stellenbosch.

replace each pixel with a 2 x 2 block of pixels, each having the same value as the
original. This isn’t a particularly good strategy, and the resulting images tend to
look “blocky” (try it!). But upsampling by a factor that isn’t an integer is more
tricky.

2.2.1 Inverse Warping

Consider going from 100 x 100 to 127 x 127. One way to do this is to duplicate 27
rows, then duplicate 27 columns in the result; to do so requires determining which
columns to duplicate. You might consider scanning the source (smaller - §) image
and, for each pixel, determining where it goes in the target (larger - 7) image. But
there are more pixels in the target than in the source, so this approach must lead
to holes in the predicted image.

The correct alternative is to scan the target image and, for each pixel, de-

Section 2.2 Upsampling and Image Interpolation 23

termine what value it should receive. This is known as inverse warping. In the
example, the 4, j’th location of 7 must get the value of the i/1.27, j/1.27th lo-
cation of §. In fact, most values requred are at locations that are not integer
values.

2.2.2 Interpolation

To produce thesevalues, construct a continuous function out of the image, then
evaluate that function at the (likely non-integer) points. This procedure is known
as interpolation and the function — the interpolate — (a) must have the same value
as the original image at the original integer grid points (b) can be evaluated at any
point rather than just the integer grid points. Write Z(z,y) for an interpolate of
an image Z.

The simplest interpolate is nearest neighbors — take the value at the integer
point closest to location whose value you want. Break ties by rounding up, so you
would use the value at 2,2 if you wanted the value at 1.5,1.5. As Figure 2.5 shows,
this strategy has problems — the upsampled image looks blocky.

There are many different ways to interpolate. Write b(u, v) for a function that
is one at the origin (so b(0,0) = 1) and is zero at every other integer grid point.
There are many such functions. For the moment, choose one. Then

ij
will be an interpolate (check you know why).

For nearest neighbors, define

by (1, 0) = 1 for—1/2<wu<1/2and —1/2<u<1/2
nnl 0 =00 otherwise

This fitted function looks like a collection of boxes, and is not continuous (Fig-
ure 2.5; exercises ()). Most widely used is bilinear interpolation. For this,
construct a function

(1—u)(1—v) for0<u<land0<wv<1
u(l —v) for —-1<u<0and 0<v<1
bpi(u,v) =< ww for —-1<u<0and -1<v<0
(1—wv forO0<u<land -1<0v<0
0 otherwise

which is continuous, and again has the convenient property that by;(0,0) = 1, but
by; = 0 for every other grid point (it looks a bit like a hat). The interpolate is

4,J

and it is a simple exercise to show that it has the properties required for an inter-
polate. Notice that this interpolate is continuous (Figure 2.5) and has a variety of
interesting properties (exercises).

24 Chapter 2 Upsampling, Smoothing and Downsampling

The basis function construction above is a good way to think about inter-
polation (and can be used to build more complicated interpolates, exercises),
but it is not the best way to evaluate a bilinear interpolate. To find a value for
Z(i+ 9,7+ ¢), where i and j are integers; 0 < § < 1; and 0 < € < 1, use

T,(1—8)(1— o)+

Zi+1,5(0)(1 —)+

Zij+1(1 = 6)(e)+
Zit1,j+1(0)(€)

It is an exercise to check that this formula yields the value that the basis function
approach would yield. By a little manipulation, you can show that this procedure
boils down to: predict a value for Z(i + 4, j) using a linear interpolate; predict a
value for Z(i + 6,7 + 1) using a linear interpolate; now linearly interpolate between
these two to get a value for Z(i+J, j +¢€). Modern hardware is particularly efficient
at bilinear interpolation, and any reasonable software environment will be able to
do this for you, likely very fast indeed.

The choice of interpolate can make a real difference to the quality of the
result (Figure 2.6). More complicated interpolation procedures are possible. In
bicubic interpolation, the interpolate is cubic in 6 and € and depends on other
neighboring pixels (exercises). Again, any reasonable software environment will
be able to do this for you. While this procedure is more complicated and slower, in
some applications the small improvements are justified. One occasionally important
difference between bicubic interpolation is that for a bilinear interpolate, the local
maxima are always at grid points, but for a bicubic interpolate, they may not
be (exercises). Constructing more complicated interpolates is straightforward
but seldom worthwhile. Another application for interpolation is demosaicing: one
could interpolate, and then sample the interpolating function. The interpolation
procedures above need some minor adjustments because the unknown values are at
grid points (details in exercises).

T(G+8,j+e) =

Remember this: Upsampling increases the size of an image. Upsample
by backward warping and interpolating. APIs offer the choice between three
main interpolation techniques are: nearest neighbors (quick and blocky);
bilinear interpolation (quick and much better); and bicubic interpolation
(somewhat slower, slightly better). The default is often nearest neighbors.

2.3 DOWNSAMPLING AND SMOOTHING
2.3.1 Aliasing: Errors Caused by Downsampling

Sampling a function can produce something that represents the function very poorly
indeed. This is most apparent when you downsample an image — reduce its size in
each dimension. To see this, take an image whose dimensions are divisible by two
(or four, or eight, and so on) then halve (or quarter, and so on) the size. To do this,

Section 2.3 Downsampling and Smoothing 25

[cans

Image downsampled by 4 downsampled by 8

FIGURE 2.7: Downsampling by just taking every k’th pizel in each direction reliably
leads to problems. The top row shows some effects on a stylized image, and the
bottom row shows results on a real photograph. The left image is the original;
center is a downsampled image obtained by taking every 4’th pixel, then printing
the image with larger pizels; right the original downsampled by taking every 8’th
pizel. Notice how detail is lost in the resampling process. For the stylized image,
some small boxes disappear (look on the edges of the image); others turn into large
bozxes (lower right quarter of the downsampled by 8 image). For the real image,
notice the behavior of the details in the window above the door, and on either side
of the door. Image credit: Figure shows my photograph of a facade in Stellenbosch.

you can simply take every second (fourth, eighth, and so on) pixel in each direction.
Figure 2.7 shows effects that occur when you downsample by an integer number
of pixels. Fine details can disappear or worse turn into coarse details. Figure 2.8
sketches a partial explanation — if there are too few samples, patterns in the image
can fall between the samples.

Downsampling by an amount that isn’t an integer is straightforward. Just like
upsampling, the correct procedure is to scan the target image and, for each pixel,
determine what value it should receive using interpolation. The errors produced
by downsampling are not the result of interpolation, though a better choice of
interpolate can help. The general term for the kind of errors seen here is aliasing.
In Chapter 15.10, we will be much more precise about these issues.

As Figure 2.8 illustrates, the key question is how many samples you draw
compared to how much detail there is in the function you are sampling. The
figure suggests a rough explanation for what is going wrong when one subsamples
an image. Samples might be poorly aligned with the underlying data, and so
misrepresent it.

2.3.2 Smoothing

The downsampler needs to compute a value for the target image at 4, j. This
location corresponds to the location u, v in the source image (so, for example, in

26 Chapter 2 Upsampling, Smoothing and Downsampling

FIGURE 2.8: A wvisualization of how sampling problems arise. The underlying image
s a checkerboard, which is sampled at each of the circles. The checkerboards on the
left and center left illustrates a sampling procedure that appears to be successful.
Whether it is or not depends on some details that we will deal with later — but the
count of checks will be correct in each case. The sampling procedures shown on
the center right and right are unequivocally unsuccessful. The samples suggest
that there are fewer checks than there are in the original patterns. This illustrates
two tmportant phenomena: first, a successful sampling scheme must sample data
often enough; and second, unsuccessful sampling schemes cause high-frequency in-
formation to appear as lower-frequency information. For example, on the right,
the sampling procedure represents a checkerboard as a single dark region.

downsampling by two, v = 2¢ and v = 2j). Call the point u, v the query point.
Using the (possibly interpolated) value of the source image at this location may
not be a particularly good idea, because there might be an important detail close
to, but not at, the query point. An alternative is to use an average of the source
image function about the query point.

In the easiest case, downsample an image by a factor of two. At every second
pixel location in each direction, compute (say) an average of the (2k+1) x (2k+1)
window of pixels centered at that location and report that average rather than the
pixel value. A simple argument suggests that this should help: now the value of the
pixel in the subsampled image is affected by its neighbors in the original image, so
details that were missed by just taking every second pixel have a chance to appear
in the result. Figure 2.9 is a picture of this argument applied to a function in one
dimension (a case that is easier to draw).

2.3.3 Gaussian Smoothing

As Figures 2.9 and 2.11 show, just averaging nearby values helps, because small
structures that might otherwise have been missed will contribute to the downsam-
pled image. But if the window is, say, a 5x5 window, small structures that are two
grid points away from the query point will have the same effect as small structures
that are one grid point away. This can be fixed by weighting the average, so that
points near the sample point have a higher weight than points far from the sample
point (Figure 2.9). The weighted average is formed as above, but the i, j’th pixel
in \V is now the weighted average of a (2k — 1) x (2k — 1) window of pixels in S,
centered on i, j.

A traditional weighting scheme is given by a one parameter family of functions,

Section 2.3 Downsampling and Smoothing 27

FIGURE 2.9: Averaging can improve the representation produced by sampling. Left
a small checkerboard pattern sampled on a grid. Each sample is the value at the
center of the small gray circle. Though this will correctly represent the board in this
configuration, a small shift in the board will result in a dramatic shift in the rep-
resentation (center left). Center right indicates what happens when you obtain
a sample by averaging in a window. The gray level in the center of the window is
my estimate of the average. Notice the edges of the checks are now blurred, but the
change when the board moves (far right) is much less dramatic. The representation
s somewhat improved.

derived from the normal distribution and widely called gaussians. The parameter
o is sometimes called the scale and more usually called the sigma of the weights.
In a 2k — 1 x 2k — 1 window, where the pixels are indexed starting at 1, the weights

will be:
1 - (<ifk>22j§jfk>2 >

where C' is chosen so the weights sum to one. Figure 2.10 shows examples for four
different values of o, using a 21 x 21 window. In this figure, the largest value of
the weights is always the same so that you can see the difference in falloff. If I
had not scaled the weights like this, the windows would be mostly dark — bigger
gaussians have much smaller individual weights, so that all the weights sum to one.
Figure 2.11 shows a 5 x5 window of these weights, and the considerable improvement
in subsampling that can result from using a set of weights. For downsampling by a
factor between one and two, 0 = 1 or 0 = 1.5 are fair choices. Figure 2.12 shows an
annoying feature of using unweighted averages to smooth. Unexpected fine details
can appear, an effect known as ringing. Section 7?7 explains where this comes from.

2.3.4 Downsampling by a Small Factor with Gaussian Smoothing

You wish to downsample by a small factor, so taking an M x N image toa R x S
image where 2 > M/R > 1, and N/S is very close to M/R. Doing so requires
smoothing, and it is sensible to use Gaussian weights with a small o (between 1
and 2, depending on the application). The downsampling will require values that
aren’t on the source grid. These values could be interpolated, but this should strike
you as likely to interact inefficiently with the weighting process. A straightforward
procedure yields a pre-smoothed version of the original image, which you can then
downsample using backward warping and interpolation.

28 Chapter 2 Upsampling, Smoothing and Downsampling

1 2
O
O
4" 8“

Unweighted Weighted

FIGURE 2.10: Sampling with a weighted average makes significant changes in the
representation. On the left, a horizontal edge in an image, to be sampled using
averages. The circles show the support of the average at each sample for part of
a column of samples. These overlap, so showing all sample points makes for a
confusing figure. Center left shows one support per column for a set of rows
of samples crossing the edge. Center shows the unweighted average within these
supports; the gradient is fairly close to linear (it would be linear if the supports were
squares). This slow gradient suggests that the edge is rather smoother than it really
1s. Center right the average within each circle is now weighted so that the center
of the circle has a fairly large weight, and the weight decreases for pizels further
from the center. Notice that now the representation has improved somewhat, as the
gradient is sharper and is about in the right place. Far right shows four choices
of weighting functions, each a gaussian of different o (the number to the top left).
Larger o values mean that pizels far from the center contribute (and so edges are
smoother); smaller o values allow edges to be sharper, but may result in aliasing
effects.

Procedure: 2.1 Downsampling an image by a small factor

Take the source image S, and form a new image A from that source.
The 4, j’th pixel in A/ is now a weighted average of a (2k —1) x (2k —1)
window of pixels in S, centered on ¢, j. Organize the weights into
a small array — the mask, which you could obtain by evaluating the
Gaussian, as above — and form a new image N from the original image
and the mask, using the rule

Mj = ZIi—u,j—UWuv

This expression is the root of all sorts of interesting ideas (Chapter 4).
There are some problems when ¢ or j or w or v are too big or too
small. Deal with these by asserting that Z and W are zero for locations
outside the range. Evaluate N on an M x N grid. Now downsample
using backward warping and interpolation.

Section 2.3 Downsampling and Smoothing 29

Image Averaged, Weighted average,
subsampled x2 subsampled x2

Weights

FIGURE 2.11: The effects shown in Figure 2.10 are quite visible in images. On the
left, an image of stripes ranging from fine to coarse. Center, a version of the image
that has been subsampled by 2, and the value of each sample is an average within a
dxd window centered on the relevant pixel. Notice how the unweighted average has
caused multiple lines to merge into a gray bar, and the relatively “slow” gradient
of the lines, which is most obvious on the horizontal lines. Right, the average in
the sample is weighted with the set of weights show on the bottom right (these
weights have been rescaled so the largest weight is light). Notice how some — though
not all — of the vertical lines on the left have been resolved, and the faster gradient
at the top and bottom of the horizontal lines.

2.3.5 The Gaussian Pyramid

Now consider downsampling by a large factor. You could (but shouldn’t) smooth
with a gaussian with large o, then downsample. This is not a good idea, because
the support of the gaussian is infinite, meaning that working with a 2k —1 x 2k — 1
window involves some truncation. As o gets bigger, k will need to get bigger to
keep this truncation reasonable, so the smoothing process will be expensive. The
more efficient alternative is to smooth, downsample by two, then smooth the result
and downsample that by two and so on, until the image size is only slightly larger
than what you want. Then downsample that by a small factor.

A useful construction follows. In some applications (Section 14.1.2 and Chap-
ter 15.10), it will be useful to have versions of an image downsampled by different
factors. A gaussian pyramid is a collection of smoothed and downsampled repre-
sentations of an image. Downsampling is usually by a factor of either two or the
square root of two (so two rounds of downsampling halves the edge length of the
image). The name comes from a visual analogy. If we were to stack the layers on
top of each other, an inverted pyramid would result. The smallest image is the
most heavily smoothed. The layers are often referred to as coarse scale versions of
the image that forms the top layer.

30 Chapter 2 Upsampling, Smoothing and Downsampling

Original Unweighted average Gaussian filtered

FIGURE 2.12: The effects shown in Figure 2.11 are quite visible in images. The top
row shows: left a luzuriant beard; center, that beard smoothed with an unweighted
average; and right, that beard smoothed with a Gaussian. The bottom row shows
details of those images. Notice the narrow dark stripes that have appeared in the
version smoothed with an unweighted average. This version appears as if it is
both more smoothed than the Gaussian smoothed version, and as if it has gained
some very fine details (the stripes) out of the smoothing procedure. The unweighted
smoother is ringing.

Section 2.3 Downsampling and Smoothing 31

Procedure: 2.2 Building a Gaussian pyramid

Write D, for the operation that smoothes an image with a gaussian of
scale o then downsamples it; U for the operation that upsamples an
image; and Gy, for the k£’'th layer of a gaussian pyramid. This notation
suppresses by how much the image is downsampled, and what particular
interpolation you use in upsampling, because these aren’t important
here. An N level gaussian pyramid then can be written as:

G = 1
Gr = Dy;(Gi-1)

GN = DU’(GN—l)'

2.3.6 The Laplacian Pyramid

One thing should trouble you about the gaussian pyramid of 2.3.5. There is re-
dundant information in the representation. Although some information is lost
in downsampling and then upsampling, it isn’t that much, because U(Gy) looks
rather a lot like G_1. This suggests using a representation where only the residual
G — U(Gg41) is preserved.

Procedure: 2.3 Building a Laplacian pyramid

Write D, for the operation that smoothes an image with a gaussian of
scale o then downsamples it; U for the operation that upsamples an
image; and Gy for the k’th layer of a gaussian pyramid. An N level
laplacian pyramid can be written as:

L, = Gl_U(DU(Gl))
Ly = Gk_U(DU(Gk))

Ly = GN.

This isn’t the most efficient way to build a Laplacian pyramid (exercises).
Figure 2.14 compares Gaussian and Laplacian pyramids. Each layer of a Laplacian
pyramid can be thought of as a representation of image information at a particular
scale. If a pattern in the image is too small for a layer, then it will have been
smoothed out; if it is too large, there will be little difference between Gy and
U(Dy(Gy)) and it will be suppressed by the subtraction.

32 Chapter 2 Upsampling, Smoothing and Downsampling

FIGURE 2.13: A Gaussian pyramid of images running from 512x512 to 8x8. On the
top row, I have shown each image at the same size (so that some have bigger pizels
than others), and the lower part of the figure shows the images to scale. Notice that
an 8z8 pizel block at the finest scale might contain a few hairs; at a coarser scale,
it might contain an entire stripe; and at the coarsest scale, it contains the animal’s
muzzle.

2.3.7 Reconstruction from Pyramids

It is easy to get an image back from a Gaussian pyramid (take the biggest layer).
It is easy to get a gaussian pyramid from a laplacian pyramid, too, because Gy =
D,(Gn-1).

Section 2.3 Downsampling and Smoothing 33

FIGURE 2.14: A comparison of Gaussian and Laplacian pyramids. Top row shows
a five layer Gaussian pyramid, and bottom row a Laplacian pyramid derived from
it. Each image has been shown at the same size (so the pizels for the 32 x 32 layers
are larger). The image is on a scale 0-1 (dark-light). All but the coarsest layer in
the Laplacian pyramid have been shown on a scale where mid-gray is 0.5, negative
numbers are dark, and positive numbers are light. Image credit: Figure shows my
photograph of a striped mouse.

Procedure: 2.4 Recovering an Image from a Laplacian pyramid
Write

Ry = w(l)L;+ Ry

R, = w(k)Lk ar Rk+1 Saa

Ry = Ly =Gjy.

If all the weights are 1, then Ry = 7.

You can emphasize or de-emphasize some effects in the image by upweighting
or downweighting the relevant scale by choosing w(k). Using strongly different
weights for different scales doesn’t usually end well. For the example of Figure 2.15,
T used weights obtained by: (a) choosing some largest scale k,. (in this case, k, = 3);
(b) choosing a weight « then (c) forming

wl) = (14 [2= RD)

Figure 2.15 shows how various choices of « either sharpen or smooth the image.

34 Chapter 2 Upsampling, Smoothing and Downsampling

Original Enhance (0.4) Suppress (-0.4)

FIGURE 2.15: Images can be reconstructed from Laplacian pyramids, and weight-
ing components can emphasize or smooth edges. The Laplacian pyramid of Fig-
ure 2.14, reconstructed into an image using the method of Section 2.5.6, with a = 0
(left; original image); o = 0.4 (center; emphasizes edges); and « = —0.4 (right;
smoothes edges).

Remember this: Downsample by smoothing, backwards warping and
interpolating. Downsampling without smoothing can create significant ef-
fects that weren’t in the original. Always smooth when downsampling, and
use a Gaussian unless you have very good reason mot to. Gaussian pyra-
mids represent an image at multiple scales. Laplacian pyramids contain
less redundant information.

Section 2.4 You should 35

2.4 YOU SHOULD
2.4.1 remember these facts:

Cameras sample light energy and report a nonlinear function of energy. 9

Upsample by backward warping and interpolating. 12
Downsample by smoothing, backwards warping and interpolating . . 22
Classifier: definition 260
Classifier performance is summarised by accuracy or error rate . . . 261
Look at false positive rate and false negative rate together 262
Do not evaluate a classifier on training data 263
Cameras: pinhole model Lo, 310
Cameras: perspective effects 317
Cameras: Lenseso 322

2.4.2 remember these procedures:

Downsampling an image by a small factor 16
Building a Gaussian pyramid oL 19
Building a Laplacian pyramid 19
Recovering an Image from a Laplacian pyramid 21

2.4.3 be able to:

e Give a brief account of what a camera does.

e Upsample an image without leaving holes using at least nearest neighbors or
bilinear interpolation.

e Downsample an image by a small factor using Gaussian smoothing and inter-
polation.

Construct a Gaussian pyramid.

Construct a Laplacian pyramid.

