
C H A P T E R 12

Voting and its Applications

12.1 THE HOUGH TRANSFORM

Given a set of N tokens, you must choose a collection of lines that represent those
tokens. There may be more than one line. Reporting one line per pair of distinct
points is not helpful. The Hough transform takes each token and casts a vote for
every line that could pass through that token, then analyzes the votes to find the
lines. This procedure can be applied to more complicated shapes, but the case of
lines is enough to illustrate all issues.

Parametrize a line as the collection of points x = (x1, x2)
T such that

x1 cos θ + x2 sin θ + r = 0.

Now any pair of (θ, r) represents a unique line, where r ≥ 0 is the perpendicular
distance from the line to the origin and 0 ≤ θ < 2π. Because the image has a
known size, there is some R such that, if r > R, the line cannot have votes (these
lines are too far away from the origin for any token to appear in the image). Call
the set of acceptable (θ, r) line space. The lines that lie on the curve in line space
given by r = −x1 cos θ+ x2 sin θ all pass through the point token at x = (x1, x2)

T .
Discretize line space with some convenient grid, where each grid element is

a bucket into which votes can be placed. This is the accumulator array. For the
i’th point token at xi = (x1,i, x2,i)

T , visit every bucket on the curve in line space
given by r = −x1,i cos θ + x2,i sin θ and add one to the count of votes in that
bucket. Now analyze the accumulator array. If there are many point tokens that
are collinear, there should be many votes in the grid element corresponding to that
line (Figure 12.1).

Notice this is an extremely general procedure, and could apply to (say) fitting
circles, planes or spheres (exercises). Practical issues make the Hough transform
as described difficult to use, even for finding lines. To my knowledge, the Hough
transform has not been used to fit lines in practice for some time. The obstacles
are worth understanding. Assume there is only one line, and all tokens lie near it.
Noise means tokens are not necessarily on the line. This noise has a nasty effect on
the accumulator array. When noise moves a token in the image, the set of lines it
will vote for in the accumulator array will move too. The bucket corresponding to
the right line will lose votes, and some other buckets gain votes. If there is enough
noise, the bucket with the largest number of votes may not correspond to the right
line.

Even if there is only one line, you should not expect all tokens lie near it.
Think about an image that is dark-ish on one side of a line and light-ish on the
other. Texture or even image noise may generate tokens on either side that have
nothing to do with the line. These tokens tend to result in phantom lines – buckets
with many votes in them that do not correspond to actual lines (Figure 12.1).

154

Section 12.2 Instance Classification by Voting 155
To

ke
ns

A
cc

um
ul

at
or

 a
rr

ay

r

θ

Line Noisy line Uniform

FIGURE 12.1: The Hough transform maps each point like token to a curve of possible
lines (or other parametric curves) through that point. These figures illustrate the
Hough transform for lines. The top row shows tokens, and the bottom row shows
the corresponding accumulator arrays (the number of votes is indicated by the gray
level; largest number of votes is full bright). Left: 20 points drawn from a line
(largest number of votes is 20). Center: the same points, offset by a small random
vector (largest number of votes is 6). Right: both coordinates of each data point
are uniform random numbers in the range [0, 1]) (largest number of votes is 4).

Changing the quantization of the accumulator array might look as though it
could control noise effects. Votes that appeared in the same bucket in a coarsely
quantized accumulator array tend to miss one another in a finer array, so buckets
with large numbers of votes due to noise should break up. But in a finely quan-
tized accumulator array, votes from tokens on the actual line will tend to miss one
another, meaning you may miss lines.

12.2 INSTANCE CLASSIFICATION BY VOTING

Instance level classification is the problem of determining whether a particular
object is present in an image. If it is there (wherever it appears) the image is
labelled with that object. Instance classification is rather different than category
level categorization, where one must determine whether any instance of a particular
category is present. So, for example, if you have to tell whether your two-year old
tabby cat is in a picture, you are doing instance level classification. If you have to
tell whether there is a cat in the image, you are doing category level categorization.

Instance level classification is important and useful in applications. I will use

156 Chapter 12 Voting and its Applications

FIGURE 12.2: On the left, an example image of a book cover, with two patches
cropped from the example. On the right, a (cropped) image of the book cover, with
instances of those two patches cropped from the image. Notice how the color has
changed in the book images. This effect is caused (at least!) by glossy reflections
from the plastic coating on the surface of the book in the example image. One patch
has had a significant color change, and likely won’t match at the pixel level; the other
might well match. A SIFT feature representation of the patches would certainly
match. Image credit: Cover of Diana Walstad’s fascinating book on reproduction
in aquarium fish, mostly guppies.

the following problem as a running example. Assume you have a large collection of
book cover images (example images), each with associated metadata (say, the name
of the book, the author, the publisher, the edition and the publication date). A user
holds a book cover in front of a camera. Assume the resulting query image is rea-
sonable – there are no fingers obscuring the book cover, it is shown at a reasonable
angle, it is shown in reasonable lighting, it happens to be the same size as in the
example image, and so on. You wish to use the example images to determine what
book appears in the query image or that the book is unknown (to you, anyway!).
Notice that, because this is an instance level classification problem, two different
editions would actually be two different instances if they looked different – so they
might have different cover pictures.

You might attack this problem with the elementary detector of Section 3.4.3,
but results would be poor. The same book covers will look different when viewed
in slightly different lighting, so just matching part of an image with the costs of
Section 3.4.2 is unlikely to work well (when the chicken of Section 3.4.3 got darker
or changed position, the match became worse).

Although the whole image of the book cover might not match because of
lighting effects, patches might match (Figure 12.2). Give each different book a
unique number. Take each known book cover image, and cut it into patches. Cluster
all the patches, and build a tree as in Section ??. Ensure that each leaf of the tree
contains relatively few patches (hundreds rather than millions). At each leaf, record
the number of the book that has the most patches in the leaf. To find the most likely

Section 12.2 Instance Classification by Voting 157

FIGURE 12.3: Direct voting on patch pixels will not work without some tricks. The
left shows the example image and a patch surrounding a female guppy. On the
right an instance of the book in a scene. The patch is rotated because the book has
been rotated. Scoring similarity with SSD will not work to match this patch to the
original. However, building the tree using patches from multiple rotated images of
the book cover would. Alternatively, building the tree using SIFT features computed
in the neighborhood constructed with the methods of Section 8.2 would work. Image
credit: Cover of Diana Walstad’s fascinating book on reproduction in aquarium
fish, mostly guppies.

book for a new cover image, cut that image into patches; pass each patch down the
tree and record a vote for the book in its leaf; now choose the book with the largest
number of votes. If that book has enough votes, decide the query image contains
that book; if it doesn’t, decide the query image contains an unknown book. This
procedure is a manifestation of the underlying principle of the Hough transform: if
many simple local measurements agree on something, they’re likely right.

There are easy ways to enhance this recipe. You could build the tree using
patches from multiple images of the book cover. For example, rotated by 0o, 90o,
1800 and 2700 and scaled by a range of scales); this is explored in the exercises
(exercises). In the original recipe, each patch votes for the book that has the
most patches in its leaf. Instead, the patch could record one vote for each book
present in its leaf. Alternatively, a patch could record a vote only when the margin
in its leaf is large enough – that is, the book that has the most patches in the leaf has
substantially more votes than the book with the second largest number. Similarly,
you could build multiple trees – each of which yields somewhat different behaviors,
because of the random starts in the k-means step and the random subsampling
in the hierarchical process – and accumulate votes over trees. These will yield
improvements, but most powerful is to use interest points and modify the tree
construction.

158 Chapter 12 Voting and its Applications

12.2.1 Voting Using Interest Points

The example images of the book covers are obtained under different circumstances
– camera position, lighting, and so on – than the query images. In turn, a patch in
a query image may look rather different from the corresponding patch in the right
example image. The tree construction of Section ?? finds an approximate nearest
neighbor using the SSD image metric, so the change in appearance could have
serious consequences – the closest patch to the query patch may not be the right
match, because the query patch has changed appearance. Further, some patches
should likely not vote, because they are not distinctive. Very many books will have,
say, patches of uniform dark grey on their covers, so voting with such a patch is
likely unhelpful and might even lead to errors.

The interest point construction of Section 8.2 is a powerful tool for dealing
with these problems. Rather than using patches, find interest points in the example
images, compute their representations, and build a tree using the representations.
This is straightforward – each interest point representation is a vector of fixed size,
just like each patch. Now query that tree using the representations of the interest
points in the query image. The interest point representations were constructed to
be stable under changes of lighting, scale, and orientation. Further, the interest
points must be at least somewhat distinctive.

Each interest point in the input image could vote for more than one book.
Pass the interest point down the tree. Now look at the leaf it lies in. The original
strategy recorded one vote for the book that appeared most often in the leaf. This
helps suppress the influence of interest points that are common, but means that
only quite distinctive interest points can vote. Alternatively, you could divide the
vote into fractions proportional to the number of times each book appears, and
record fractional votes. So if “Decline and Fall” appears once, “Scoop” appears
once, and “Put out more Flags” appears three times, then “Decline and Fall” and
“Scoop” each get 1/5 of a vote, and “Put out more Flags” gets 3/5 of a vote.
Now you may get the identity of a book right even if there is nothing particularly
distinctive on its cover. Less helpfully, many titles will get small numbers of votes,
and there is a bigger prospect of the wrong title getting too many votes.

12.3 ELEMENTARY DETECTION BY VOTING

The elementary classifier above is a classifier because it tells whether a book cover
is present in an image. It can be improved into a detector, because the interest
point construction yields where the book cover is.

If you build the instance detector using interest points, you will find it can
be inaccurate. Part of the difficulty is that the same interest point can appear on
many different book covers. For example, each large letter on a cover is likely to
produce some interest points – in the worst case, an interest point on a query image
might match every book with a ’T” on its cover, which isn’t helpful. The current
voting scheme looks only at what interest points are on the cover, but does not
account for where they are. It is quite straightforward to do so by further voting,
and the result is an elementary detector – the system can tell what book cover is
present and where it is.

Section 12.3 Elementary Detection by Voting 159

Interest points Center in interest point coordinate system

FIGURE 12.4: Interest points can vote on the location of the center of the book,
because each interest point carries its own coordinate system. On the left, the
cover image, with the center of the cover marked as an empty circle. Center shows
two interest points, with their coordinate systems attached. I have marked the origin
of the coordinate system with another circle, and the orientation with an arrow. On
the right, I show each interest point rotated so that the coordinate systems line up,
and mark the location of the center of the book in each point’s coordinate system.
For the top interest point, the book center is quite far away from the origin, but
for the bottom interest point, it is quite close. Image credit: Cover of Diana
Walstad’s fascinating book on reproduction in aquarium fish, mostly guppies.

12.3.1 Voting on Centers

Assume that each example image is cropped to the cover of the book, and con-
tains nothing else, so the center of the cover is easy to find in the example images.
When you construct an interest point, you construct a local image coordinate sys-
tem (origin at corner, Section 8.2.1; scale from Section 8.2.2; and orientation from
Section 8.2.3). For each interest point in the example image, you can record the
location of the books center in this interest point’s coordinate system, and insert
this information in the tree with the interest point.

Now think about a query image of the book cover. Find an interest point in
that query image, and match it using the tree. You can recover a predicted location
of the center of the book from that interest point. It is just the location recorded
in the tree, but now in the coordinate system of the interest point in the query
image. Different interest points in the query image that agree on the name of the
book should also agree on the location of the center of the book.

This observation increases the scope of voting considerably. A simple and very
effective strategy is to censor votes. Collect all votes for a particular book. For each
predicted center, check that there is another prediction (or two other predictions,
and so on) of the center nearby. If there is, record a vote for that book. If there is
not, the interest point does not vote. Finally, take the book with the largest number
of votes. Notice that this reduces the chance that you misidentify the book, but
might increase the chance that you label the book as “unknown”.

160 Chapter 12 Voting and its Applications

FIGURE 12.5: Matching to a book cover is conceptually straightforward. Find each
interest point in the scene. Pass each down the tree to find what covers it might
match and where it places the center of the book in the scene image. If enough
interest points agree as to a center location, allow them to vote on their titles.
Here, three interest points have been detected; two agree on the location and title,
and the third is ignored because nothing agrees with it. Image credit: Cover of Diana
Walstad’s fascinating book on reproduction in aquarium fish, mostly guppies.

Alternatively, you could think about voting in terms of an accumulator array
(the practical obstacles to actually doing this should be obvious and should deter
you). In principle, you could have a 3D accumulator array. Two dimensions are
spatial, and the third is the identity of the book. You would pass every interest
point detected in the image through the tree and vote for the book and location
associated with it. You would then analyze the accumulator array – this is like the
voting procedure above; the votes are censored because votes for the wrong location
of the center won’t find one another in the accumulator array. You should think
of this accumulator array as very complicated feature that describes the image.
Rather than trying to build this, you should think of it as an example of the
kind of image features that could be constructed. Chapter 15.10 offers much more
efficient constructions of comparable features.

12.3.2 Recovering Location, Scale and Orientation

Matching an interest point tells you more than just where the center of the book
might be. Take an interest point in an example image of a book cover. You could
record the orientation and the bounding box of the book cover in the interest
point’s coordinate system – a total of five parameters, and use that. You could
not use the accumulator (too many buckets, exercises), but you could use this
information to censor votes. Alternatively, ignore the bounding box until you have

Section 12.4 Modifying the Tree 161

Interest points

Bounding box in interest point coordinate system

FIGURE 12.6: Interest points can vote on center location, orientation and scale of
the book cover. This information yields the outline of the book, so you can think of
interest points each carrying a vote as to the book cover outline. On the left, the
cover image, with the outline marked in heavy lines. Center shows two interest
points, with their coordinate systems attached. On the right, I show each interest
point rotated so that the coordinate systems line up. I have marked the outline of
the cover, in the interest point’s coordinate system with heavy lines. Image credit:
Cover of Diana Walstad’s fascinating book on reproduction in aquarium fish, mostly
guppies.

determined what book is present. Now use the interest points that were allowed
to vote for that book to determine the bounding box of the book present in the
image. Alternatively, you could record the rotation, scale and aspect ratio of the
book cover as well as the location of the center of the book (this is equivalent to
the bounding box, exercises). Quite a useful detector can be built like this
exercises .

12.4 MODIFYING THE TREE

A tree constructed using hierachical k-means may not be particularly good for these
classification and detection tasks. The hierarchical k-means construction tends to
split the data up so that leaves contain interest points that are similar to one
another. A better tree would exploit the labels during construction. For example,
it might have leaves that contain interest points that agree on label.

To illustrate the difference, think about a collection of books that all have a
large face on the cover. Each will have an interest point at the inside and outside
corner of each eye (say). These interest points will mostly look quite similar to
one another, and might all end up in the same leaf using a hierarchical k-means
tree. But some differences are more important than others. For example, eyelashes
might have quite a small effect on the description of the interest point, and so
interest points at eyes with small lashes may appear in the same leaf as interest
points at eyes with large lashes. Ideally, the tree is constructed to exploit this small
difference in appearance, because it has a big effect on identity. Ensuring that eyes

162 Chapter 12 Voting and its Applications

−5 0 5
−5

0

5

y>.32

x>1.06x>-0.58

1 2 31

2

2

2
21

1
1

1 1

1 2

1

32

2 3

3
3

3

3

3
2

2
2

FIGURE 12.7: The tree of Figure 11.3 divides feature space by choosing which of a set
of centers is closest to a query point. This figure shows a straightforward decision
tree, illustrated in two ways. The test is now a test of one of the dimensions against
a threshold. The data points belong to three classes. On the left, I have given the
rules at each split, and labelled each leaf with the most common class in the leaf.
On the right, I have shown the data points in two dimensions, and the structure
that the tree produces in the feature space.

with small eyelashes appear in different leaves than eyes with large eyelashes should
help improve the accuracy of the tree.

It turns out that a powerful approach for building a tree incorporates a great
deal of randomness. As a result, you get a different tree each time you train a tree
on a dataset. None of the individual trees will be particularly good (they are often
referred to as “weak learners”). The natural thing to do is to produce many such
trees (a decision forest), and allow each to vote; the class that gets the most votes,
wins. This strategy is extremely effective.

12.4.1 Building a Decision Tree

Walking a data point down a tree is straightforward. Go to root and apply the
following recursive procedure: if the node the point is at is a leaf, stop and report
the leaf; otherwise, decide which child the point lies in, then recur. For the tree
built with hierarchical k-means, each child has a center associated with it, and the
point lies in the child whose center is closest. Building a different kind of tree is
just a matter of changing the procedure to choose the child. If the leaf is associated
with a label, the tree is typically called a decision tree.

There are many algorithms for building decision trees. I will describe an
approach chosen for simplicity and effectiveness; be aware there are others. I will
always use a binary tree, because it’s easier to describe and because that’s usual
(it doesn’t change anything important, though). In the binary case, each node has
a decision function, which takes data items and returns either 1 or -1.

Now think about the tree’s effect on the training data. Pass the whole pool of

Section 12.4 Modifying the Tree 163

o
o

o
o

o
o

o
o

o

o

Informative split

x
x

x

x
x

x
x

x
x

x

o
o

o
o

o
o

o
o

o

o

Less informative split

x
x

x

x
x

x
x

x
x

x

FIGURE 12.8: Two possible splits of a pool of training data. Positive data is repre-
sented with an ‘x’, negative data with a ‘o’. Notice that if we split this pool with
the informative line, all the points on the left are ‘o’s, and all the points on the
right are ‘x’s. This is an excellent choice of split — once we have arrived in a leaf,
everything has the same label. Compare this with the less informative split. We
started with a node that was half ‘x’ and half ‘o’, and now have two nodes each of
which is half ‘x’ and half ‘o’ — this isn’t an improvement, because we do not know
more about the label as a result of the split.

training data into the root. Any node splits its incoming data into two pools, left
(all the data that the decision function labels 1) and right (ditto, -1). Finally, each
leaf contains a pool of data, which it can’t split because it is a leaf. Ideally, all the
data items in each leaf have the same label, and there are not too many leaves.

Training the tree uses a straightforward algorithm. First, choose a class of
decision functions to use at each node. It turns out that a very effective algorithm
is to choose a single feature at random, then test whether its value is larger than, or
smaller than a threshold (by a gross extension of metaphor, this is sometimes known
as a decision stump). For this approach to work, one needs to be quite careful about
the choice of threshold (next section). Surprisingly, being clever about the choice
of feature doesn’t seem add a great deal of value. I won’t spend more time on other
kinds of decision function, though there are lots.

Constructing the tree is a matter of starting with the whole dataset at the
root, then recursively either splitting the dataset at that node or stopping and
returning. If the node is split, the dataset arriving at the node is split too, with
points in the left node going left and those in the right going right. The main
questions are how to choose a split (next section), and when to stop splitting.

Stopping is relatively straightforward, and simple strategies for stopping work.
It is hard to choose a decision function with very little data, so splitting must stop
when there is too little data at a node. If all the data at a node belongs to a single
class, there is no point in splitting. Finally, constructing a tree that is too deep
tends to result in generalization problems, so stop anyhow at a fixed depth D of
splits.

Here is a strategy for choosing a split. For some number of attempts, choose

164 Chapter 12 Voting and its Applications

o
o

o
o

o
o

o
o

o
o

o
o

Less informative splitInformative split

x
x

x
x

x
x

x

x
x

x
x

x

o
o

o
o

o
o

o
o

o
o

o
o

x
x

x
x

x
x

x

x
x

x
x

x

x
x

x
x

x
x

x

x
x

x
x

x

o
o

o
o

o
o

o
o

o
o

o
o

x
x

x
x

x
x

x

x
x

x
x

x

o
o

o
o

o
o

o
o

o
o

o
o

x
x

x
x

x
x

x

x
x

x
x

x

x
x

x
x

x
x

x

x
x

x
x

x

FIGURE 12.9: Two possible splits of a pool of training data. Positive data is repre-
sented with an ‘x’, negative data with a ‘o’. Notice that if you split this pool with
the informative line, all the points on the left are ‘x’s, and two-thirds of the points
on the right are ‘o’s. This means that knowing which side of the split a point lies
would give you a good basis for estimating the label. In the less informative case,
about two-thirds of the points on the left are ‘x’s and about half on the right are ‘x’s
— knowing which side of the split a point lies is much less useful in deciding what
the label is.

a single feature uniformly and at random. Set up a range of threshold values for
that feature. Each represents a possible decision function (i.e. test the chosen
feature against the chosen threshold). Now compute some measure of goodness for
each of the decision functions, and keep the best. Experience shows this strategy
is effective, with an appropriate measure of goodness.

Figure 12.8 shows two possible splits of a pool of training data. There are
two classes (“positives” or 1 and “negatives” or -1). One split is quite obviously
a lot better than the other. In the good case, the split separates the pool into
positives and negatives. In the bad case, each side of the split has the same number
of positives and negatives. Assume you know which child a data point lies in. The
good case is good because you then require no more information to tell what its
label is. The bad case is bad because you do require quite a lot more information
to predict the point’s label.

Figure ?? shows a more subtle case to illustrate this. The splits in this figure
are obtained by testing the horizontal feature against a threshold. In one case,
the left and the right pools contain about the same fraction of positive (‘x’) and
negative (‘o’) examples. In the other, the left pool is all positive, and the right pool
is mostly negative. This is the better choice of threshold. If you were to label any
item on the left side positive and any item on the right side negative, the error rate
would be fairly small. If you count, the best error rate for the informative split is
20% on the training data, and for the uninformative split it is 40% on the training
data.

All this suggests a procedure to score how good the split is. In the unin-
formative case, knowing that a data item is on the left (or the right) does not
tell you much more about the data than you already knew. This is because

Section 12.4 Modifying the Tree 165

p(1|left pool, uninformative) = 2/3 ≈ 3/5 = p(1|parent pool) and p(1|right pool, uninformative) =
1/2 ≈ 3/5 = p(1|parent pool). For the informative pool, knowing a data item is on
the left classifies it completely, and knowing that it is on the right allows us to clas-
sify it an error rate of 1/3. The informative split means that your uncertainty about
what class the data item belongs to is significantly reduced if you know whether
it goes left or right. To choose a good threshold, you need to keep track of how
informative the split is.

12.4.2 Choosing a Split with Information Gain

Write P for the set of all data at the node. Write Pl for the left pool, and Pr for
the right pool. The entropy of a pool C scores how many bits would be required to
represent the class of an item in that pool, on average. Write n(i; C) for the number
of items of class i in the pool, and N(C) for the number of items in the pool. Then
the entropy H(C) of the pool C is

−
∑
i

n(i; C)
N(C)

log2
n(i; C)
N(C

.

It is straightforward that H(P) bits are required to classify an item in the parent
pool P. For an item in the left pool, H(Pl) bits are needed; for an item in the right
pool, H(Pr) bits are needed. If the parent pool is split, you will encounter items
in the left pool with probability

N(Pl)

N(P)

and items in the right pool with probability

N(Pr)

N(P)
.

This means that, on average, you must supply

N(Pl)

N(P)
H(Pl) +

N(Pr)

N(P)
H(Pr)

bits to classify data items if the parent pool is split. A good split is one that results
in left and right pools that are informative. In turn, you should need fewer bits to
classify once you have split than before the split. You can see the difference

I(Pl,Pr;P) = H(P)−
(
N(Pl)

N(P)
H(Pl) +

N(Pr)

N(P)
H(Pr)

)
as the information gain caused by the split. This is the average number of bits that
you don’t have to supply if you know which side of the split an example lies. Better
splits have larger information gain. All this yields a relatively straightforward
blueprint for an algorithm, which I have put in a box. It’s a blueprint, because
there are a variety of ways in which it can be revised and changed.

166 Chapter 12 Voting and its Applications

Procedure: 12.1 Building a decision tree: overall

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional feature vector, and each yi is a label. Call this dataset
a pool. Now recursively apply the following procedure:

• If the pool is too small, or if all items in the pool have the same
label, or if the depth of the recursion has reached a limit, stop.

• Otherwise, search the features for a good split that divides the
pool into two, then apply this procedure to each child.

We search for a good split by the following procedure:

• Choose a subset of the feature components at random. Typically,
one uses a subset whose size is about the square root of the feature
dimension.

• For each component of this subset, search for a good split using
the procedure of box 12.2.

Procedure: 12.2 Splitting an ordinal feature

We search for a good split on a given ordinal feature by the following
procedure:

• Select a set of possible values for the threshold.

• For each value split the dataset (every data item with a value of
the component below the threshold goes left, others go right), and
compue the information gain for the split.

Keep the threshold that has the largest information gain.
A good set of possible values for the threshold will contain values that
separate the data “reasonably”. If the pool of data is small, you can
project the data onto the feature component (i.e. look at the values of
that component alone), then choose the N − 1 distinct values that lie
between two data points. If it is big, you can randomly select a subset
of the data, then project that subset on the feature component and
choose from the values between data points.

12.4.3 Forests

A single decision tree can yield poor classifications. One reason is because the
tree is not chosen to give the best classification of its training data. We used a
random selection of splitting variables at each node, so the tree can’t be the “best

Section 12.4 Modifying the Tree 167

possible”. Obtaining the best possible tree presents significant technical difficulties.
It turns out that the tree that gives the best possible results on the training data
can perform rather poorly on test data. The training data is a small subset of
possible examples, and so must differ from the test data. The best possible tree on
the training data might have a large number of small leaves, built using carefully
chosen splits. But the choices that are best for training data might not be best for
test data.

Rather than build the best possible tree, we have built a tree efficiently, but
with number of random choices. If we were to rebuild the tree, we would obtain
a different result. This suggests the following extremely effective strategy: build
many trees, and classify by merging their results.

12.4.4 Building and Evaluating a Decision Forest

There are two important strategies for building and evaluating decision forests. I
am not aware of evidence strongly favoring one over the other, but different software
packages use different strategies, and you should be aware of the options. In one
strategy, we separate labelled data into a training and a test set. We then build
multiple decision trees, training each using the whole training set. Finally, we
evaluate the forest on the test set. In this approach, the forest has not seen some
fraction of the available labelled data, because we used it to test. However, each
tree has seen every training data item.

Procedure: 12.3 Building a decision forest

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional feature vector, and each yi is a label. Separate the dataset
into a test set and a training set. Train multiple distinct decision trees
on the training set, recalling that the use of a random set of components
to find a good split means you will obtain a distinct tree each time.

In the other strategy, sometimes called bagging, each time we train a tree we
randomly subsample the labelled data with replacement, to yield a training set the
same size as the original set of labelled data. Notice that there will be duplicates
in this training set, which is like a bootstrap replicate. This training set is often
called a bag. We keep a record of the examples that do not appear in the bag (the
“out of bag” examples). Now to evaluate the forest, we evaluate each tree on its
out of bag examples, and average these error terms. In this approach, the entire
forest has seen all labelled data, and we also get an estimate of error, but no tree
has seen all the training data.

168 Chapter 12 Voting and its Applications

Procedure: 12.4 Building a decision forest using bagging

We have a dataset containing N pairs (xi, yi). Each xi is a d-
dimensional feature vector, and each yi is a label. Now build k boot-
strap replicates of the training data set. Train one decision tree on each
replicate.

12.4.5 Classifying Data Items with a Decision Forest

Once we have a forest, we must classify test data items. There are two major
strategies. The simplest is to classify the item with each tree in the forest, then
take the class with the most votes. This is effective, but discounts some evidence
that might be important. For example, imagine one of the trees in the forest has a
leaf with many data items with the same class label; another tree has a leaf with
exactly one data item in it. One might not want each leaf to have the same vote.

Procedure: 12.5 Classification with a decision forest

Given a test example x, pass it down each tree of the forest. Now choose
one of the following strategies.

• Each time the example arrives at a leaf, record one vote for the
label that occurs most often at the leaf. Now choose the label
with the most votes.

• Each time the example arrives at a leaf, record Nl votes for each of
the labels that occur at the leaf, where Nl is the number of times
the label appears in the training data at the leaf. Now choose the
label with the most votes.

An alternative strategy that takes this observation into account is to pass the
test data item down each tree. When it arrives at a leaf, we record one vote for each
of the training data items in that leaf. The vote goes to the class of the training
data item. Finally, we take the class with the most votes. This approach allows
big, accurate leaves to dominate the voting process. Both strategies are in use, and
I am not aware of compelling evidence that one is always better than the other.
This may be because the randomness in the training process makes big, accurate
leaves uncommon in practice.

