
C H A P T E R 17

Making an Autoencoder that Works

17.1 ENVIRONMENTS AND APIS

It is just possible to build an autoencoder in a simple programming environment
using the description of the previous chapter, but doing so will be very hard work
and the result will work poorly even with a great deal of fiddling. I do not encour-
age the exercise – though it is informative, the knowledge will be hard-won. An
autoencoder is an example of a neural network, a category containing a wide range
of of enormously useful approximation procedures. All but the simplest neural net-
works require an extraordinary amount of housekeeping. Building an autoencoder
would need: efficient convolution code; correct evaluation of gradients (which are
surprisingly easy to get wrong); housekeeping for backpropagation; various code to
implement an optimizer and scheduling; and code to monitor the learning process.

A very high component of the computation workload for autoencoders (and
neural networks generally) is, essentially, linear algebra. Fairly quickly it will be-
come obvious that specialized hardware support is highly desirable. It is a re-
markable fact that a GPU (or, occasionally, graphics processing unit) supports the
operation required. GPUs were originally designed to support very fast rendering
for high speed computer gaming. There are now several software environments that
support the necessary housekeeping to map a network onto a GPU, evaluate the
network and its gradients on the GPU, train the network by updating parameters,
and so on. The easy availability of these environments has been an important factor
in the widespread adoption of neural networks.

At time of writing, environments include:

• Deep Learning Toolbox, a Matlab toolbox for deep learning, at https://
www.mathworks.com/help/deeplearning/index.html?s_tid=CRUX_lftnav.

• MLX https://github.com/ml-explore/mlx

• PaddlePaddle: This is an environment developed at Baidu research. You
can find it at http://www.paddlepaddle.org. If you arrive at that page and
find it in Chinese, note that there is a button you can click that gives an
English version. It is also available at https://github.com/paddlepaddle/
paddle. There is tutorial material on each page.

• PyTorch: This is an environment developed at Facebook’s AI research. You
can find it at https://pytorch.org. There are video tutorials at https:

//pytorch.org/tutorials/. The environment is very widely adopted.

• Tensorflow: This is an environment developed at Google. You can find
it at https://www.tensorflow.org. There is extensive tutorial material at
https://www.tensorflow.org/tutorials/.
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• Keras: This is an environment developed by François Chollet, intended to
offer high-level abstractions independent of what underlying computational
framework is used. It is supported by the TensorFlow core library. You can
find it at https://keras.io. There is tutorial material at that URL.

Each of these environments has their own community of developers. But these
aren’t the only environments. You can find a useful comparison at https://en.

wikipedia.org/wiki/Comparison_of_deep-learning_software that describes many
other environments.

It is now common in the research community to publish code, networks and
datasets openly. This means that, for much cutting edge research, you can easily
find a code base that implements a network; and all the parameter values that the
developers used to train a network; and a trained version of the network; and the
dataset they used for training and evaluation. Companies often publish weights
and models, too. There are a variety of online platforms that share models, code
and datasets and provide reference releases. Platforms (and environments) are at
various stages of monetization, but as of writing all had free options.

• HuggingFace serves as a repository of models, example code and docu-
mentation. You can find this at https://huggingface.co/docs/hub/index;
there is a nice getting started page at https://huggingface.co/docs/hub/
repositories-getting-started.

• Github is another repository of shared code, models and datasets, at https:
//github.com.

• Papers with code

Earlier environments you may encounter, but which appear to be no longer
used include:

• Matconvnet: This is an environment for MATLAB users, originally written
by Andrea Vedaldi and supported by a community of developers. You can
find it at http://www.vlfeat.org/matconvnet. There is a tutorial at that
URL.

• Darknet: This is an open source environment developed by Joe Redmon.
You can find it at https://pjreddie.com/darknet/. There is some tutorial
material there.

• MXNet: This is a software framework from Apache that is supported on
a number of public cloud providers, including Amazon Web Services and
Microsoft Azure. It can be invoked from a number of environments, including
R and MATLAB). You can find it at https://mxnet.apache.org.

17.2 NETWORK TRICKS

If you rushed off to build an autoencoder after reading Section 17.1, you likely
encountered some practical problems.
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17.2.1 Useful Practical Tricks

Input scale: The mechanics of learning can get difficult if large numbers appear in
any data blocks. Typically, the optimization either descends slowly or even diverges.
Large numbers can cause a variety of problems. One is precision: subtracting two
large but similar numbers and getting the answer right requires a lot of bits, because
the answer will be small. Another is gradient scale: very large values in the gradient
can make it hard to choose a learning rate that is small enough to get the learning
process to converge. You will find that scaling the input image so that it occupies
the range [−1, 1] can significantly improve practical learning (exercises ).

Output scale: Images have values in a fixed range, typically either [0, 255/256]
or [0, 255]. What comes out of a convolutional layer does not. There are a variety of
ways to deal with this problem. You could apply a function that maps the output
to the range you want. For example,

sigmoid(x) =
ex

1 + ex

will map any x to the range (0, 1). There are alternative notations for the sigmoid
(exercises ). Another example is tanh(x), which will map any x to the range
(−1, 1) (and getting from there to (0, 1) is easy). This approach has difficulties,
however. Assume the output needs to be close to 1. Then for either of these
mappings, the value of x will need to be large. Worse, changing the output to make
it slightly larger will require a very large change in x, meaning the gradient will be
very small which can create problems in training.

You might think that using

f(x) = ReLU(x)− ReLU(x− 1)

would be a good idea (because it maps any x to the range [0, 1]). In fact, it is a
terrible idea, because once the output is outside that range, there is no gradient to
push it back into the range (Section 16.3.1; exercises ).

A second strategy is to accept the output of the convolutional layer, but
penalize values that appear outside the range you want with a loss term. For
example, apply the loss

Lud(x) = x2I[x<0] + (x− 1)2I[x>1].

It is often useful to mix these strategies. For example, a final layer that applies

f(x) = a(tanh(x) + b)

will map x to the range (a(b− 1), a(b+ 1)). If you choose b < 1 and a > 1/(b+ 1),
then the output can be below zero (but not much) and above one (but not much).
Further, the gradients won’t be too small at zero or one. You can then push the
outputs to be in that range with a penalty term.

Color images: All the remarks of Section 9.1.1 apply here. You can choose
the color representation you use for both input and output when you train an
autoencoder to denoise color images. You should choose a color representation that
is as decorrelated as possible, so: decompose into LAB; use sophisticated denoising
on L; and use a heavily smoothed version of A and B.
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Encoder Decoder

1 2 1 2

FIGURE 17.1: In a very simple two layer autoencoder with skip connections, the first
encoder layer produces a block of features (above, white block) which is passed to
the second layer. The second layer downsamples to a smaller, deeper block (above,
long white block). The decoder receives this, passes it through the first decoder layer
and upsamples to obtain a block which has the same spatial extent as the white block
(above, gray block). The white block and gray block are stacked and passed through
the second decoder layer. The second decoder layer needs to have more filters, but
can now see both short scale features (the white block) and longer scale features
(from the gray block).

17.2.2 Skip Connections

An important difficulty presented by stacking many convolutional layers is that
any feature produced by the encoder necessarily depends on a fairly large receptive
field. This can make it difficult to produce reconstructions with sharp edges. A
feature that depends on a very small neighborhood could provide enough informa-
tion to place an edge accurately – for example, report the gradient of the image.
If the receptive field is large, constructing a very local feature that isn’t somewhat
smoothed will require a set of weights that ignores many or most of the pixel values
in the receptive field, which will be difficult to achieve. However, features with large
receptive fields may be necessar to denoise, because they can observe long-range
trends in the image.

This argument suggests encoding the image with many blocks of features,
each depending on different sized receptive fields. An easy way to do this is to pass
the block of features that comes from the first layer of the encoder to both the
next layer of the encoder and the last layer of the decoder (Figure 17.1). This trick
works with the second layer of the encoder and next to last layer of the decoder as
well, etc.

17.2.3 Batch Normalization

Numbers with large magnitude in a neural network cause problems. Imagine some
input to some unit is big and the weight applied to that input is small. Then a
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single gradient step could cause the weight to change sign, and the ReLU might
cause the corresponding output to swing between strongly positive and zero. This
can cause training problems, because the gradient will be a poor predictor of what
will actually happen to the output. Ideally, relatively few values at the input of
any layer will have large absolute values. A new layer, sometimes called a batch
normalization layer, can be inserted between two existing layers to ensure this
happens.

Write I for the input of this layer, which is a X × Y × F block of features,
and O for its output, which is a block of features of the same dimension. The layer
has two vectors of parameters, γ and β, each of dimension F . Write γi for the
i’th component of γ, etc. Assume we know the mean (mk) and standard deviation
(sk) of each feature in I computed over the whole dataset and over the spatial
dimensions. Write ϵ for a small positive number chosen to avoid divide-by-zero.
The data block U , with ijk’th component

Uijk =
(Iijk −mk)

(sk + ϵ)

will tend to have small magnitude numbers in it, both positive and negative. The
mean of each feature in this block should be about zero, because it is close to the
mean over all blocks. The standard deviation of each feature in this block should
be about one, because it is close to the standard deviation over all blocks. Now
compute

Oijk = γkUijk + βk

and notice that O could be the same as I (set γk = sk and βk = mk). The output
of this layer is a differentiable function of γ and β, which can be adjusted to achieve
the best performance.

Neither the mean or standard deviation are known, because the parameters of
the previous layers are unknown. To estimate them, start with mean 0 and standard
deviation 1 for each feature layer. Now choose a minibatch, and train the network
using that minibatch. Once you have taken enough gradient steps and are ready to
work on another minibatch, reestimate the mean as the mean of values of the inputs
to the layer, and the standard deviation as the corresponding standard deviations.
Now obtain another minibatch, and proceed. Remember, γ and β are parameters
that are trained, just like the others. Once the network has been trained, take the
mean (resp. standard deviation) of the layer inputs over the training data for mean
(resp. standard deviation). Most neural network implementation environments will
do all the work for you. A reliable source of errors in using an API is not to “tell”
the environment that you want a network with batch normalization layers in it to
switch from training to evaluation mode – be careful about this.

17.2.4 Residual Connections

An autoencoder built according to the recipes above and trained with enough data
will perform tolerably, but you will notice some annoying effects. The autoencoders
of Figure 16.4 and Figure 16.5 use relatively few convolutional layers by current
standards. The encoder architecture is in Figure 17.3 and Figure 17.4. If there are
relatively few layers in the encoder and the decoder, the reconstructions will tend
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to be quite sharp, but the autoencoder will not be very good at dealing with more
than light noise. This is because the receptive fields of elements in the encoder must
be quite small, and so the codes do not see many input pixels. If there are many
layers in the encoder and decoder, the autoencoder might not train satisfactorily

Imagine training many layers stacked on one another. Look at Section 16.2.3,
and notice that the gradient of the first layer’s parameters depends on a stack of
derivative matrices connecting the output of the last layer to the result of the first.
But the derivative matrices may not be particularly helpful, because the parameters
for each layer are wrong (which is why we are training). In turn, the gradient of the
first layer’s parameters may not be helpful. Now think about the last layer. There
are no intervening layers, so problems with derivative matrices don’t apply. But
the derivative is evaluated with layer applied to a particular set of input values,
and depends on these values. These values are wrong, because the previous layers
are wrong, so the gradient update at the earliest layer is going to be poor as well.
The argument applies to early and late layers, rather than just first and last. If
there are few layers, this effect will not prevent training. But a deep stack of layers
may be very hard to train. Gradient steps may diverge, or require an impractically
small learning rate – and so a very large number of steps – to converge.

Residual connections are an extraordinarily powerful method to improve train-
ing behavior for very deep convolutional networks. The idea is straightforward, and
most easily described in an abstract way. Recall Section 16.2.3 wrote the w’th layer
as Lw(·; θw). Now write Vw for a slightly modified version of the identity opera-
tor, modified so that all dimensions of Vw(B) are the same as all dimensions of
Lw(B; θw) and Vw is “very like” the identity.

Here is one way to build Vw. If the data block that comes out of Lw has the
same size as the one that goes in, then Vw is the identity operator. If Lw makes
the feature dimension of the data block get smaller, then Vw projects off some
dimensions of the input to match. If Lw makes the feature dimension of the data
block get bigger, then Vw pads the input with zeros to match dimensions. Finally,
if Lw subsamples the data block so that its spatial dimensions get smaller, so does
Vw.

Now write Rw(·; θw) = Vw + Lw(·; θw). Imagine stacking three such layers to
get

B4 = R3(B3; θ3)

B3 = R2(B2; θ2)

B2 = R1(B1; θ1)

B1 = I.

In the simplest case, where Vw happens to be the identity, this is

B4 = B3 + L3(B3; θ3)

B3 = B2 + L2(B2; θ2)

B2 = B1 + L1(B1; θ1)

B1 = I
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+ + +

FIGURE 17.2: Three simple residual layers, drawn in black. The output is the sum
of a term that passes through all layers (green); three terms that each pass through
two layers (red); and three terms that pass through one layer each.

equivalently

B4 = I + L1(I; θ1) + L2(B2; θ2) + L3(B3; θ3)

B3 = I + L1(I; θ1) + L2(B2; θ2)

B2 = I + L1(I; θ1)

so the output block consists of a series consisting of:

• a term that passes from the input to the output directly;

• a term that passes from the input to the output through one layer;

• a term that passes from the input to the output through two layers;

• and a term that passes through all three layers.

as Figure 17.2 shows.
This series reveals why the residual connections could help learning. The

gradient will be the gradient of the series, and so will have terms that have passed
through no layers, one layer, two layers and three layers. In the early stages of
learning, there should be some improvement in each layer, because the gradient
of the term that passes through that layer alone is quite accurate. As learning
proceeds, these improvements should cause layers to make sensible reports to the
next layer, meaning that terms that pass through two layers will be good, too. There
is strong evidence in practice that residual layers help learn very deep networks. In
practice, these improvements in learning manifest when Vw isn’t the identity; very
often, Vw is a simple convolutional layer, as in Figure 17.3.
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FIGURE 17.3: Autoencoders in the worked examples of Sections 21.1.3 and 21.1.3
are built out of two, fairly standard blocks. On the left, an encoder block, with
arguments: input dimension; scale; output dimension; and stride. This is built out
of convolutional blocks (light rectangles: arguments are: input dimension; output
dimension; kernel size; stride and padding); batch normalization blocks (darker rect-
angles); ReLU layers (vertical lines). There is a residual connection, going through
a single convolutional layer. In the center, a decoder block, with arguments: input
dimension; scale; and output dimension. On the right, a very simple autoencoder.
The encoder is a single encoder block and the decoder is one decoder block followed
by a convolutional layer.

17.3 OPTIMIZATION AND TRAINING

Everyone is surprised the first time they learn that the best direction to travel in
when you want to minimize a function is not, in fact, backwards down the gradient.
The gradient is uphill, but repeated downhill steps along the gradient are often not
particularly efficient. I will show this very important point in several ways because
different people have different ways of understanding this point.

17.3.1 The Gradient as a Poor Choice of Direction: Algebra

Here is an example in algebra. Consider f(x, y) = (1/2)(ϵx2 + y2), where ϵ is a
small positive number. The gradient at (x, y) is (ϵx, y). For simplicity, use a fixed
learning rate η, so [

x(r)

y(r)

]
=

[
(1− ϵη)x(r−1)

(1− η)y(r−1)

]
.

Start at, say, (x(0), y(0)) and repeatedly go downhill along the gradient; you will
travel very slowly to your destination. You can show that[

x(r)

y(r)

]
=

[
(1− ϵη)rx(0)
(1− η)ry(0)

]
.

The problem is that the gradient in y is quite large (so y must change quickly) and
the gradient in x is small (so x changes slowly). In turn, for steps in y to converge
requires |1− η | < 1; but for steps in x to converge requires only the much weaker
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FIGURE 17.4: The autoencoder with skip connections in the worked examples of
Sections 21.1.3 and 21.1.3 is built out of a sequence of encoder blocks, followed
by a sequence of decoder blocks (blocks in Figure 17.3). The skip connections are
indicated by in the drawing. Note that the connection simply stacks the output of
the connected encoder block on the output of the relevant decoder block, which is
why the input dimensions are so big. The no-skip comparison version omits the
skip connections and uses decoder blocks with smaller input dimensions.

constraint |1− ϵη | < 1. Choose the largest η you dare for the y constraint. The y
value will very quickly have small magnitude, though its sign will change with each
step. But the x steps will move closer to the right spot only extremely slowly.

17.3.2 The Gradient as a Poor Choice of Direction: Geometry

Another way to see this problem is to reason geometrically. Figure 17.5 shows this
effect for this function. The gradient is at right angles to the level curves of the
function. But when the level curves form a narrow valley, the gradient points across
the valley rather than down it. The effect isn’t changed by rotating and translating
the function (Figure 17.6).

17.3.3 Alternative Directions

You may have learned that Newton’s method resolves this problem. This is all very
well, but to apply Newton’s method would require knowing the matrix of second
partial derivatives. A network can easily have millions to billions of parameters,
and there is no hope of working with matrices of these dimensions.

One useful insight into the problem is that fast changes in the gradient vector
are worrying. For example, consider f(x) = (1/2)(x2 + y2). Imagine you start
far away from the origin. The gradient won’t change much along reasonably sized
steps. But now imagine yourself on one side of a valley like the function f(x) =
(1/2)(x2 + ϵy2) (Figure 17.5); as you move along the gradient, the gradient in the
x direction gets smaller very quickly, then points back in the direction you came
from. You are not justified in taking a large step in this direction, because if you
do you will end up at a point with a very different gradient. Similarly, the gradient
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FIGURE 17.5: A plot of the level curves (curves of constant value) of the function
f(x, y) = (1/2)(ϵx2 + y2). Notice that the value changes slowly with large changes
in x, and quickly with small changes in y. The gradient points mostly toward the
x-axis; this means that gradient descent is a slow zig-zag across the “valley” of
the function, as illustrated. It might be possible to fix this problem by changing
coordinates, but doing so would require second derivative information because the
problem is caused by the directional derivative in some directions being big and in
other directions being small.

in the y direction is small, and stays small for quite large changes in y value. You
would like to take a small step in the x direction and a large step in the y direction.

You can see that this is the impact of the second derivative of the function
(which is what Newton’s method is all about). But Newton’s method isn’t available.
Ideally, a method travels further in directions where the gradient doesn’t change
much, and less far in directions where it changes a lot. There are several ways to
achieve this.

17.3.4 Momentum

Parameters need to be discouraged from “zig-zagging” as in the example above.
In these examples, the problem is caused by components of the gradient changing
sign from step to step. It is natural to try and smooth the gradient. Momentum
forms a moving average of the gradient. Construct a vector v, the same size as the
gradient, and initialize this to zero. Choose a positive number µ < 1. Then iterate

v(r+1) = µv(r) + η∇θE

θ(r+1) = θ(r) − v(r+1)

Notice that, in this case, the update is an average of all past gradients, each weighted
by a power of µ. If µ is small, then only relatively recent gradients will participate
in the average, and there will be less smoothing. Larger µ lead to more smoothing.
A typical value is µ = 0.9. It is reasonable to make the learning rate go down
with epoch when you use momentum, but keep in mind that a very large µ will
mean you need to take several steps before the effect of a change in learning rate
shows. Correctly implementing weight decay requires care when momentum is
present (exercises ).
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FIGURE 17.6: Rotating and translating a function rotates and translates the gradient;
this is a picture of the function of figure 17.5, but now rotated and translated. The
problem of zig-zagging remains. This is important, because it means that choosing
a good change of coordinates is likely very hard.

17.3.5 Adagrad and RMSprop

This is a method to keep track of the size of each component of the gradient. In
particular, there is a running cache c which is initialized at zero. Choose a small

number α (typically 1e-6), and a fixed η. Write g
(r)
i for the i’th component of the

gradient ∇θE computed at the r’th iteration.Then iterate

c
(r+1)
i = c

(r)
i + (g

(r)
i )2

θ
(r+1)
i = θ

(r)
i − η

g
(r)
i

(c
(r+1)
i )

1
2 + α

Notice that each component of the gradient has its own learning rate, set by the
history of previous gradients.

RMSprop is a modification of Adagrad, to allow it to “forget” large gradients

that occurred far in the past. Again, write g
(r)
i for the i’th component of the

gradient ∇θE computed at the r’th iteration. Now choose another number, ∆,
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(the decay rate; typical values might be 0.9, 0.99 or 0.999), and iterate

c
(r+1)
i = ∆c

(r)
i + (1−∆)(g

(r)
i )2

θ
(r+1)
i = θ

(r)
i − η

g
(r)
i

(c
(r+1)
i )

1
2 + α

17.3.6 Adam

This is a modification of momentum that rescales gradients, tries to forget large

gradients, and adjusts early gradient estimates to correct for bias. Again, write g
(r)
i

for the i’th component of the gradient ∇θE computed at the r’th iteration. Choose
three numbers β1, β2 and ϵ (typical values are 0.9, 0.999 and 1e-8, respectively),
and some stepsize or learning rate η, then iterate

v(r+1) = β1 ∗ v(r) + (1− β1) ∗ ∇θE

c
(r+1)
i = β2 ∗ c(r)i + (1− β2) ∗ (gri )2

v̂ =
v(r+1)

1− βt
1

ĉi =
ĉ
(r+1)
i

1− βt
2

θ
(r+1)
i = θ

(r)
i − η

v̂i√
ĉi + ϵ

17.3.7 Hyperparameters: Weights, etc.

There are a variety of hyperparameters – values that need to be chosen before
training, like choice of optimizer, initial learning rate, learning rate scheduling
strategy, weight of SSD loss against L1 loss, and so on – that need to be set to train
a model. Generally, the choice of hyperparameters for a complex model can be a
difficult problem, requiring specialized machinery. Problems include: there may
be many hyperparameters; there isn’t much theoretical insight into what values
they should take or how they might interact; and evaluating any particular set of
hyperparameters is likely expensive (train the model, then evaluate it).

At this point, I will concentrate on rules of thumb. One widely used rule of
thumb is that Adam is used to train models used to publish papers – because one
gets fast descent, so you can fiddle with the results till the deadline – but either
vanilla SGD or SGD with momentum is used to train production models – because
one tends to get more robust models, but slowly. Another useful rule of thumb is
that it is usually obvious when an initial learning rate is too large. The model will
typically diverge quickly – you’ll get nan’s in the parameters and then the losses. If
the learning rate is much too small, you will get no or minimal descent. In turn, you
can set an initial learning rate quite easily by trying a value larger than you think
will work (1e-2 has a following), then reducing it till the model does not diverge.

For the class of model described here, the learning rate scheduling in Sec-
tion 16.2.1 is quite sufficient (though if your API provides others, it is always
amusing to try them). The number of steps to take and the constant to scale the



246 Chapter 17 Making an Autoencoder that Works

learning rate by are typically set by experiment. It is usually a good idea to pass
through all training data at least once before scaling the learning rate. The scale
is typically either 0.1 or 0.3 (roughly, the square root of 0.1).

For parameters like the relative weights of different losses, typically only quite
large changes in value matter very much. However, choosing these parameters takes
some care, because the intention is to produce the best behavior on application data
rather than on training data. But the model will be slightly better on training data
than on other data, because it has been trained to do well on training data. This
means you must evaluate the model on data that wasn’t used in training. It is
natural to split the available data into a training set, a validation set, and a test
set. Now train models on the training set for several different parameter values, and
evaluate each on the validation set. Choose the model with the best performance
on the validation set. Notice that you do not know how well this model works
on application data, because it has been chosen to be good on the validation data
(and so the estimate of how well it works is likely somewhat biased). Finally,
evaluate this model by applying it to the test set. This recipe applies whatever the
measure used for “goodness” of the model (choose from the cases in Section 9.1.2,
for example).

17.4 WORKED EXAMPLE

Figures 17.3 and 17.4 sketch three autoencoders. The reference version, with skip
connections, is shown in Figure 17.4; the caption for that figure describes a version
without skip connections. Finally, Figure 17.3 is a shallow autoencoder. These
autoencoders, which are quite shallow by current practice, are trained on 500, 000
distinct images of size 128× 128. In training, each sees a total of 2M images. They
are trained with a mixed L1/L2 loss. During training, noise is applied to input
images using: additive Gaussian noise of randomly chosen magnitude; salt and
pepper noise of fixed magnitude; gaussian blurring with a blur kernel of random
σ < 3; and “knockout”, where randomly chosen blocks of pixels of randomly chosen
size up to 9× 9 are set to zero.

Skip connnections make a significant difference to autoencoder performance.
Figures 17.8 and ?? compare the output of these autoencoders. Figure ?? shows a
detail panel for each of the inputs and outputs of Figure 17.8.

The PSNR’s are shown for a variety of cases. PSNR is computed by averaging
over five outputs: one resulting from a clean version of the image, and one resulting
from an input with an instance of each of the four types of noise. Figure 17.8 shows
a PSNR computed like this for the example image and the mean and standard
deviation of PSNR computed for 500 test images.

There are some fairly reliable conclusions that one can draw from this quite
simple example. First, notice that autoencoders can produce learned representa-
tions of images that are highly effective at denoising. Second, the autoencoder
without skip connections produces heavily blurred images: it is really difficult for
fine spatial detail to make its way through all those layers. Third, the shallow (skip
only) network does rather well for local noise effects (salt and pepper noise; additive
Gaussian noise) but is less effective for effects that require a longer scale view of
the image (deblurring; knockout). Comparing the shallow network to the deeper
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FIGURE 17.7: Comparing autoencoder reconstructions for various kinds of noise and
various kinds of autoencoder. Details in the text. Image credit: Images is my
photograph of an enticing shop window.

network with skip connections suggests strongly (and correctly) that deeper image
descriptions tend to be better, as long as there is a mechanism like skip connections.
Finally, notice that deblurring is hard.

TODO: A section on fine-tuning
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FIGURE 17.8: Detail panels comparing autoencoder reconstructions for various kinds
of noise and various kinds of autoencoder. Details in the text. Image credit: Images
is my photograph of an enticing shop window.


