Epipolar geometry
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Many slides adapted from J. Johnson and D. Fouhey
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What happens in two views

3 degrees of freedom

/ \
® ®
2 measurements
2 measurements




All of Camera Geometry

® From the picture

® two views of a point give four measurements of three DOF
® this means
® correspondence is constrained

® if we have enough points and enough pix we can recover
® points
® cameras



Two views of the same 3D scene, because:

* You have two
Eyes
Cameras

« OR the camera moves




Consider two views of the same 3D scene

* What constraints must hold
between two projections of the
same 3D point?




Consider two views of the same 3D scene

« Given a 2D point in one view,
where can we find the
corresponding point in the
other view?




Consider two views of the same 3D scene

« Given only 2D correspondences, A
how can we calibrate the two =
cameras, i.e., estimate their ] I
relative position and orientation

and the intrinsic parameters? e
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Consider two views of the same 3D scene

« Key idea: we want to answer
all these questions without
explicit 3D reasoning, by
considering the projections of
camera centers and visual
rays into the other view




Epipolar geometry setup

[
0 -\ /- o0’
« Suppose we have two cameras with centers 0, 0’
* The baseline is the line connecting the origins



Epipolar geometry setup

\ /

- Epipoles e, e’ are where the baseline intersects the image planes,
or projections of the other camera in each view




Epipolar geometry setup

0 e

« Consider a point X, which projects to x and x’



Epipolar geometry setup

« The plane formed by X, 0, and O’ is called an epipolar plane
« There is a family of planes passing through 0 and 0’



Epipolar geometry setup

- Epipolar lines connect the epipoles to the projections of X
« Equivalently, they are intersections of the epipolar plane with the
Image planes — thus, they come in matching pairs



Epipolar geometry setup: Summary

Baseline

Epipoles



Example configuration: Converging cameras
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» Epipoles are finite, may be visible in the image




Example configuration: Converging cameras




Example configuration: Motion parallel to image plane

4, 0’
* Where are the epipoles and what do the epipolar lines look like?



Example configuration: Motion parallel to image plane

« Epipoles infinitely far away, epipolar lines parallel



Example configuration: Motion parallel to image plane
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Example configuration: Motion perpendicular to image plane

« Epipole is “focus of expansion”
and coincides with the principal
point of the camera

« Epipolar lines go out from
principal point




Example configuration: Motion perpendicular to image plane
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Example configuration: Motion perpendicular to image plane




Epipoles (resp. epipolar lines)

® Informative on their own

N

Epipole and epipolar lines in camera 1 - where is camera 2?
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Epipolar constraint

o

* Suppose we observe a single point x in one image



Epipolar constraint
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« Where can we find the x’ corresponding to x in the other image?



Epipolar constraint

0 e

« Where can we find the x’ corresponding to x in the other image?
* Along the epipolar line corresponding to x (projection of visual
ray connecting O with x into the second image plane)



Epipolar constraint

h X
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 Similarly, all points in the left image corresponding to x" have
to lie along the epipolar line corresponding to x’



Epipolar constraint
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« Potential matches for x have to lie on the matching epipolar line I
« Potential matches for x’ have to lie on the matching epipolar line [



Epipolar constraint: Example




Epipolar constraint

« Whenever two points x and x’ lie on matching epipolar lines [ and ',
the visual rays corresponding to them meet in space, i.e., x and x’
could be projections of the same 3D point X



Epipolar constraint

o o o

Remember: in general, two rays do not meet in space!




Epipolar constraint

¢« X, X, X, 0, O are coplanar
« Know O, O
 Choose x — This yields the plane and so I’ and x’ lies on I’
« So there is some vector function f(x; O, O’) such that
« f(x; O, O x'=0



Epipolar constraint
XI

« Caveat: if x and x' satisfy the epipolar constraint, this doesn’t mean
they have to be projections of the same 3D point
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Math of the epipolar constraint. Calibrated case

» Assume the intrinsic and extrinsic parameters of the cameras are known,
world coordinate system is set to that of the first camera

« Then the projection matrices are given by K[I | 0] and K'[R | t]

» We can pre-multiply the projection matrices (and the image points) by
the inverse calibration matrices to get normalized image coordinates:

Xnorm = K_lxpixel = [I'| 0]X, X' norm = K'1x; = [R| t]X

pixel =



Math of the epipolar constraint. Calibrated case
X=(x1D"

We have x' = Rx + t
This means the three vectors x’, Rx, and t are linearly dependent
This constraint can be written using the triple product

x' - [tx(Rx)] =0



Math of the epipolar constraint. Calibrated case

X=(x1D"

R1t](7)

= Rx+t

x' - [tx(Rx)]=0 mm xT[t,JRx=0

0 —as a,]/b;
as 0 —a1] <b2> = [ax]b

—ady aq 0 b3

Recall: axb =




Math of the epipolar constraint. Calibrated case

X=(x1D"

R1t](7)

= Rx+t

x' - [tx(Rx)]=0 mmy xT[t,JRx=0 mB) xTEx=0

.

Essential Matrix

H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections.

Nature 293 (5828): 133—-135, September 1981


https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf

The essential matrix




The essential matrix: Properties

« Ex is the epipolar line associated with x (I' = Ex)

Recall: alineis givenby ax + by + ¢ = Oorl’x =0
wherel = (a,b,c)' and x = (x,y, D



The essential matrix: Properties

Ex is the epipolar line associated with x (I' = Ex)
E"x" is the epipolar line associated with x’ (I = E"x")

Ee=0 and E’e' =0
E is singular (rank two) and has five degrees of freedom
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Epipolar constraint: Uncalibrated case

 The calibration matrices K and K’ of the two cameras are unknown

* We can write the epipolar constraint in terms of unknown normalized
coordinates:

IT —_
anI‘mEanI‘m _ O’

where x,orm = K 1%, X' 1orm = K/ 71X/



Epipolar constraint: Uncalibrated case

X

X  EXporm =0 HE) xTFx =0, Whereiz K TEK™1

Fundamental Matrix

— -1
xnorm - K X
! _ 1—1 .7
X norm — K X

Faugeras et al., (1992), Hartley (1992)



https://en.wikipedia.org/wiki/Fundamental_matrix_(computer_vision)

The fundamental matrix

fir fiz fi3
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The fundamental matrix: Properties

Fx is the epipolar line associated with x (I' = Fx)
F'x' is the epipolar line associated with x’ (I = F'x')

Fe=0 and F'e' =0
F is singular (rank two) and has seven degrees of freedom



The fundamental matrix: Properties

e Fis singular (rank two) and has seven degrees of freedom
* Why singular?

—F maps any point on one side to a line in through epipole on other

» NOT to a general line
» So 2DOF pt -> 1DOF family of lines
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« Estimating the fundamental matrix



Estimating the fundamental matrix

« Given: correspondences x = (x,y,1)" and x’ = (x',y/, DT




Estimating the fundamental matrix

« Given: correspondences x = (x,y,1)" and x’ = (x',y/, DT
 Constraint: x'TFx = 0

(x',y',1) l

f11 f12
f21 f22
f31 f32

f13
f23
f33

I

X

y
1

>= 0 ‘ (%, x'y, X', y'%,y'y, ¥, %,y,1)
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f13
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The eight point algorithm

x'x x'y x' y'x yy vy o x y 1
\ : Y J

U

 Homogeneous least squares to find f:

arg min ||Uf]|2 Eigenvector of UTU with
Ifll=1 smallest eigenvalue

fi1
f12
f13
f1
f22
f23
f31
f32
f33

\
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Enforcing rank-2 constraint

 We know F needs to be singular/rank 2. How do we force it to
be singular?

« Solution: take SVD of the initial estimate and throw out the
smallest singular value

Finit = UZV"

l

—X=1|0 o, O

X l 0 0 Ol

F=UXV"T

o, O
— O 0-2
0 O




Enforcing rank-2 constraint

Initial F estimate Rank-2 estimate




Normalized eight point algorithm

f11\

105 105 10° 10° 105 10° 10° 10% 1 | /22
f13
fa1
faz [=0
: f23
| v | f51
U f32/

f33

* Recall that x, y, x', y" are pixel coordinates. What might be the
order of magnitude of each column of U?

* This causes numerical instability!

x'x x'y x' y'x yy vy o x y 1




The normalized eight-point algorithm

* In each image, center the set of points at the origin, and scale
It so the mean squared distance between the origin and the
points is 2 pixels

« Use the eight-point algorithm to compute F from the
normalized points

« Enforce the rank-2 constraint

» Transform fundamental matrix back to original units: if T and
T’ are the normalizing transformations in the two images,
then the fundamental matrix in original coordinates is T'"FT

R. Hartley. In defense of the eight-point algorithm. TPAMI 1997



https://www.cse.unr.edu/~bebis/CS485/Handouts/hartley.pdf
https://www.cse.unr.edu/~bebis/CS485/Handouts/hartley.pdf
https://www.cse.unr.edu/~bebis/CS485/Handouts/hartley.pdf

Nonlinear estimation

 Linear estimation minimizes the sum of squared algebraic
distances between points x; and epipolar lines Fx; (or points
x; and epipolar lines F' x})

Z (x’TFx)

* Nonlinear approach: minimize sum of squared geometric
distances

2 [dist(x}, Fx,)? + dist(x, FTx})?]
l




Comparison of estimation algorithms

8-point Normalized 8-point Nonlinear least squares

Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel

Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel




Seven-point algorithm

« Set up least squares system with seven pairs of matches and
solve for null space (two vectors) using SVD

« Solve for polynomial equation to get coefficients of linear
combination of null space vectors that satisfies det(F) = 0

Source: e.g., M. Pollefeys tutorial (2000)


http://cmp.felk.cvut.cz/cmp/courses/dzo/resources/tutorial-pollefeys-eccv/node57.html

From epipolar geometry to camera calibration

« Estimating the fundamental matrix is known as “weak
calibration”

 |f we know the calibration matrices of the two cameras, we
can estimate the essential matrix: E = K'"FK

* The essential matrix gives us the relative rotation and
translation between the cameras, or their extrinsic parameters

 Alternatively, if the calibration matrices are known (or in
practice, if good initial guesses of the intrinsics are available),
the five-point algorithm can be used to estimate relative
camera pose

D. Nister. An efficient solution to the five-point relative pose problem. IEEE Trans. PAMI, 2004



http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.1518&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.1518&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.1518&rep=rep1&type=pdf

The Fundamental Matrix Song

http://danielwedge.com/fmatrix/


http://danielwedge.com/fmatrix/
http://danielwedge.com/fmatrix/
http://danielwedge.com/fmatrix/
http://danielwedge.com/fmatrix/
http://danielwedge.com/fmatrix/

Monocular visual odometry

A calibrated camera

 views a static scene,
*  moves,
« views again

 Q: how did it move?
« We care, because this allows us to recover movement from single cameras

« We should be able to tell
Recall epipoles etc are quite informative about movement



Visual odometry

« Use eight point algorithm, recover fundamental matrix
* Recall:

- —T —1
F=kC;TRSC,
» But we know calibration, which yields essential matrix

E=KTR

* Q: what can we get out of essential matrix?



Visual odometry, I

Antisymmetric

|

E=KTR
T

Unknown constant Rotation



Visual odometry, Il

* Recall singular value decomposition

Orthonormal
L]
M =Uxy?t
I

Diagonal matrix
Of non-negative singular
values



Visual odometry, IV

M =uUuxyt £ — kTR
* Notice
E  and ERT have the same singular values
« So that

Singular values( E ) = singular vaIues(T)



Visual odometry, V

Check

singular values(7) =

Write

UpYpVy =&

S O W»

S »w O

o O O



Visual odometry, VI

 Write

e Check

UpY g WUL

U W VL

Is antisymmetric

IS a rotation



Visual odometry, VII

So we can recover

Rotation exactly

Translation up to scale

From an essential matrix



