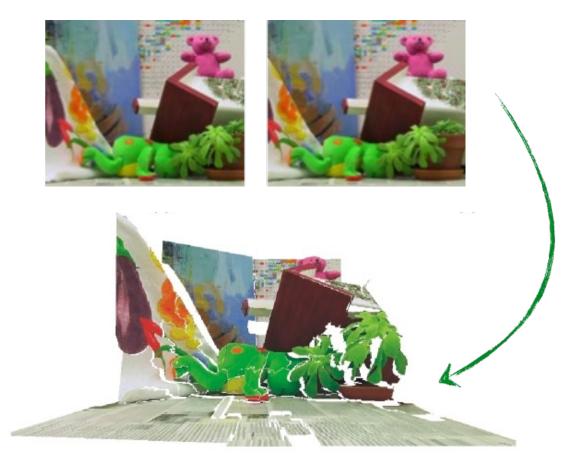
Two-View Stereo



Many slides adapted from Steve Seitz

Problem formulation

- **Given**: stereo pair (assumed calibrated)
- Wanted: dense depth map



Outline

- Motivation and history
- Basic two-view stereo setup
- Local stereo matching algorithm
- Beyond local stereo matching
- Active stereo with structured light

Stereo vision and perception of depth

• What cues tell us about scene depth?

How Two Photographers Unknowingly Shot the Same Millisecond in Time

MAR 07, 2018

RON RISMAN

PetaPixel

https://petapixel.com/2018/03/07/two-photographers-unknowingly-shot-millisecond-time/

How Two Photographers Unknowingly Shot the Same Millisecond in Time

MAR 07, 2018

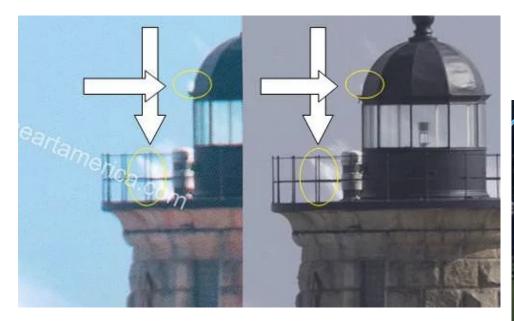
RON RISMAN

PetaPixel

https://petapixel.com/2018/03/07/two-photographers-unknowingly-shot-millisecond-time/

How Two Photographers Unknowingly Shot the Same Millisecond in Time

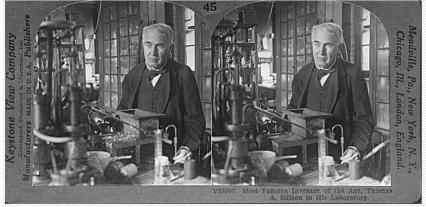
MAR 07, 2018
RON RISMAN



https://petapixel.com/2018/03/07/two-photographers-unknowingly-shot-millisecond-time/

History: Stereograms

• Humans can fuse pairs of images to get a sensation of depth

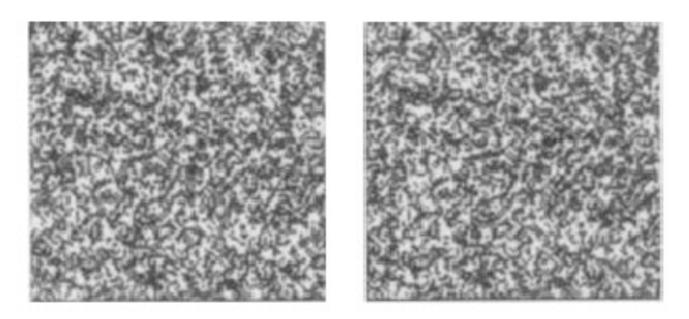


Stereograms: Invented by Sir Charles Wheatstone, 1838

https://en.wikipedia.org/wiki/Stereoscopy

History: Random dot stereograms

- Invented by <u>Bela Julesz</u> in the mid-20th century
- Demonstration that stereo perception can happen without any monocular cues



https://en.wikipedia.org/wiki/Random_dot_stereogram

Outline

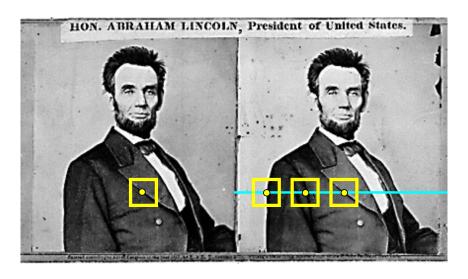
- Motivation and history
- Basic two-view stereo setup

Problem formulation

- **Given**: stereo pair (assumed calibrated)
- Wanted: dense depth map

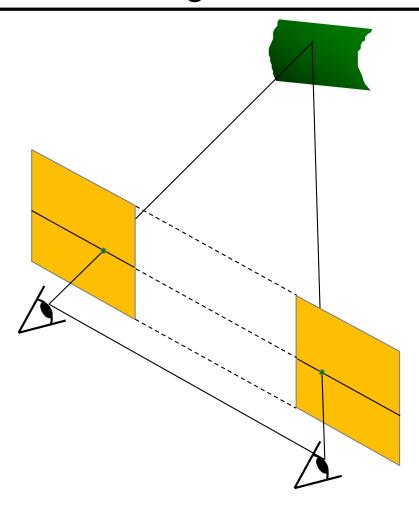


Basic stereo matching algorithm



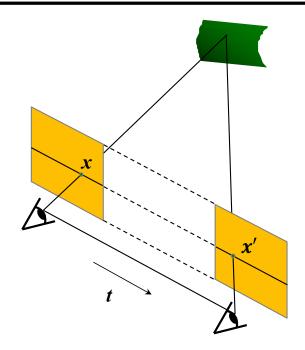
- For each pixel in the first image
 - Find corresponding epipolar line in the right image
 - Examine all pixels on the epipolar line and pick the best match
 - Triangulate the matches to get depth information
- Simplest case: epipolar lines are corresponding scanlines
 - When does this happen?

Parallel images



- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at the same height
- Focal lengths are the same
- Then epipolar lines fall along horizontal scan lines of the images

Essential matrix for parallel images



Epipolar constraint:

$$\mathbf{x}^{\prime T}\mathbf{E}\mathbf{x}=0, \qquad \mathbf{E}=[\mathbf{t}_{\times}]\mathbf{R}$$

$$\mathbf{R} = \mathbf{I} \quad \mathbf{t} = (t, 0, 0)$$

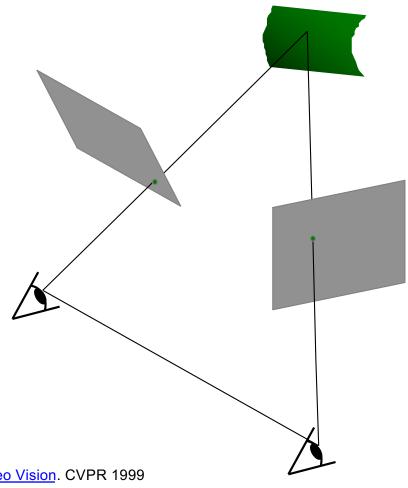
$$\boldsymbol{E} = [\boldsymbol{t}_{\times}]\boldsymbol{R} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -t \\ 0 & t & 0 \end{bmatrix}$$

$$(u' \ v' \ 1) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -t \\ 0 & t & 0 \end{bmatrix} \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = 0 \qquad (u' \ v' \ 1) \begin{pmatrix} 0 \\ -t \\ tv \end{pmatrix} = 0 \qquad \qquad -tv + tv' = 0$$

$$v = v'$$

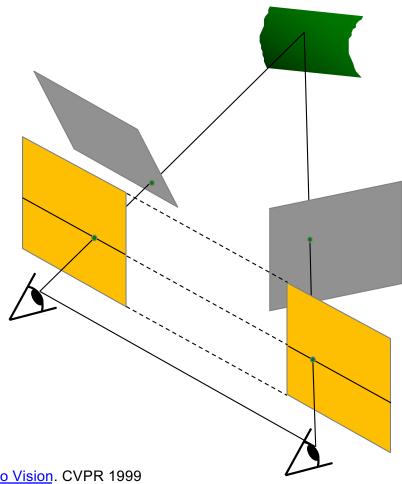
The *y*-coordinates of corresponding points are the same!

 If the image planes are not parallel, we can find homographies to project each view onto a common plane parallel to the baseline



C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. CVPR 1999

 If the image planes are not parallel, we can find homographies to project each view onto a common plane parallel to the baseline



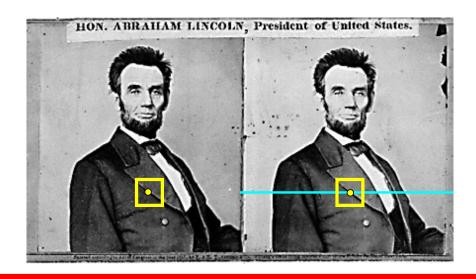
C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. CVPR 1999

• Before rectification:

• After rectification:

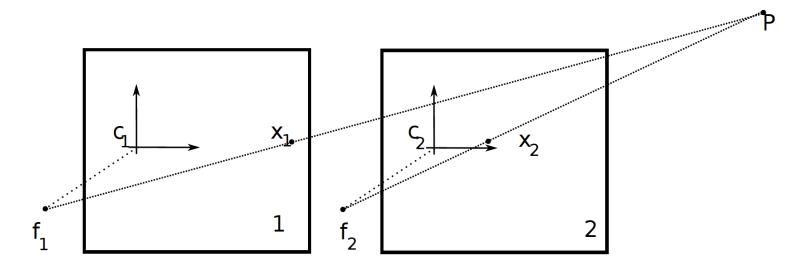
Another rectification example

Basic stereo matching algorithm



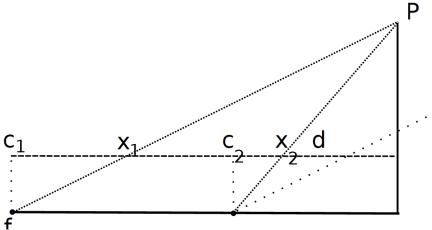
- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
 - Find corresponding epipolar scanline in the right image
 - Examine all pixels on the scanline and pick the best match x'
 - Triangulate the matches to get depth information

Two cameras view a point...



RGBD cameras). Here we show a specialized camera geometry, chosen to simplify notation. The second camera is translated with respect to the first, along a direction parallel to the image plane. The second camera is a copy of the first camera, so the image planes are parallel. In this geometry, the point being viewed shifts somewhat to the left in the right camera.

Two cameras view a point...

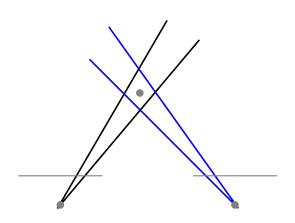


But there are limits to stereopsis. Measuring large depths with two cameras that are close together requires highly accurate estimates of point positions in images. Figure 19.7 shows a simple geometry that illustrates the problem. The point **P** projects to \mathbf{x}_1 in camera 1, and to \mathbf{x}_2 in camera 2. Notice because of the carefully chosen camera geometry, the y-coordinates of \mathbf{x}_1 and \mathbf{x}_2 are the same; only the x-coordinates differ. Write x_1 for the x-coordinate of \mathbf{x}_1 ; X for the x-coordinate of P, and so on. From the triangles in that figure, we have

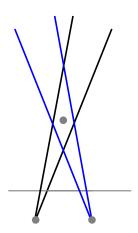
$$d = x_2 - x_1 = f \frac{(X - B) - X}{Z} = -f \frac{B}{Z}$$

meaning that as **P** gets further away, the *disparity* (difference between projected positions in left and right cameras) gets smaller, and so gets harder to measure.

Effect of baseline on stereo results

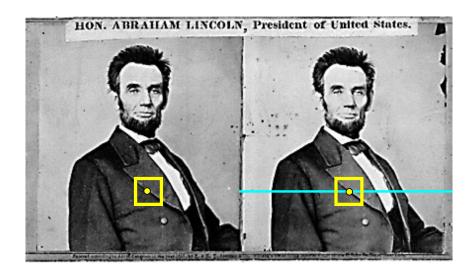


- Larger baseline
 - + Smaller triangulation error
 - Matching is more difficult



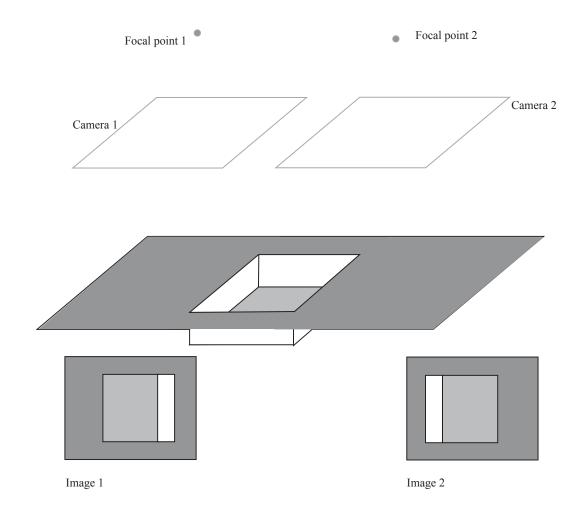
- Smaller baseline
 - Higher triangulation error
 - + Matching is easier

Basic stereo matching algorithm



- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
 - Find corresponding epipolar scanline in the right image
 - Examine all pixels on the scanline and pick the best match x'
 - Compute disparity x x' and set depth(x) = Bf/(x x')

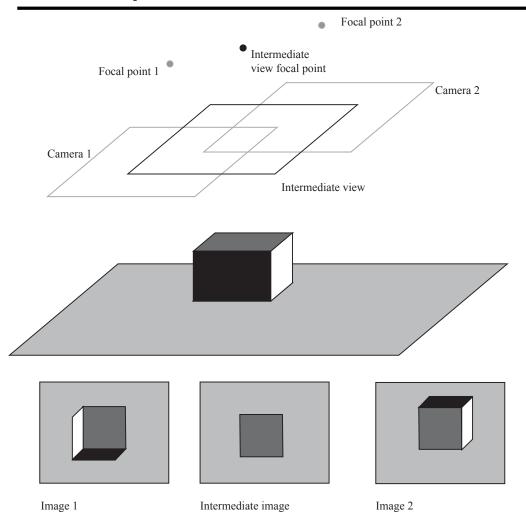
Some points don't have matches - I



This is a depth cue, though not much used directly

Effect sometimes known as Da Vinci stereopsis

Some points don't have matches - II



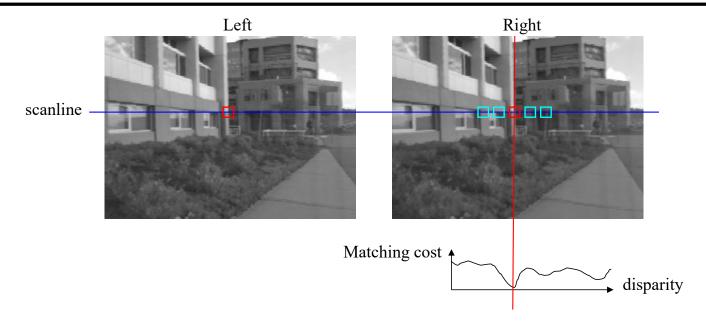
This is a depth cue, though not much used directly

Effect sometimes known as Da Vinci stereopsis

Outline

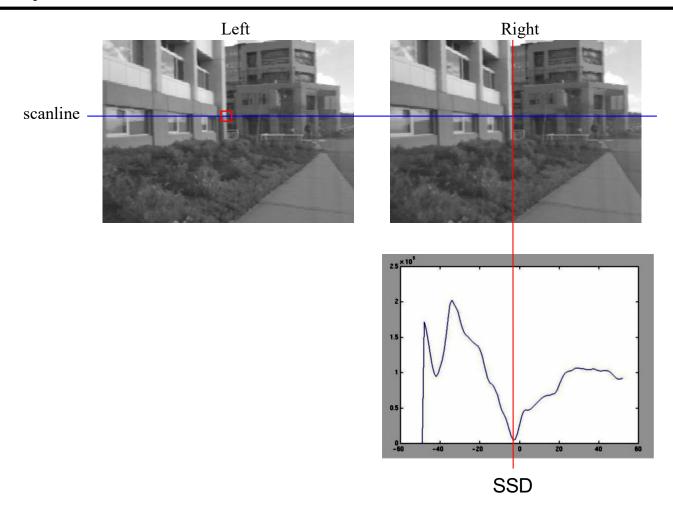
- Motivation and history
- Basic two-view stereo setup
- Local stereo matching algorithm

Correspondence search

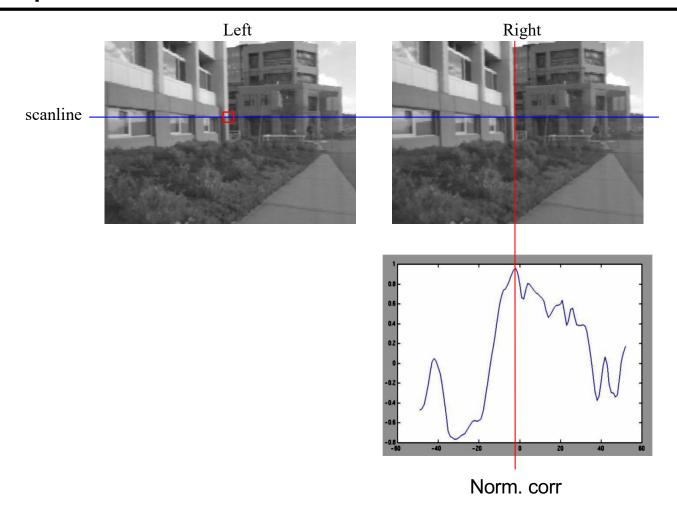


- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

Correspondence search

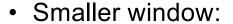


Correspondence search



Effect of window size on correspondence search

Window size 3

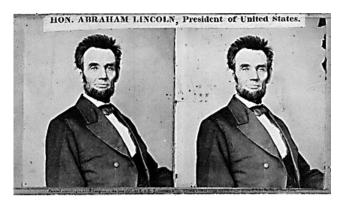


- + More detail
- More noise

Window size 20

- Larger window:
 - + Smoother disparity maps
 - Less detail

Where will basic window search fail?



Textureless surfaces

Occlusions, repetition

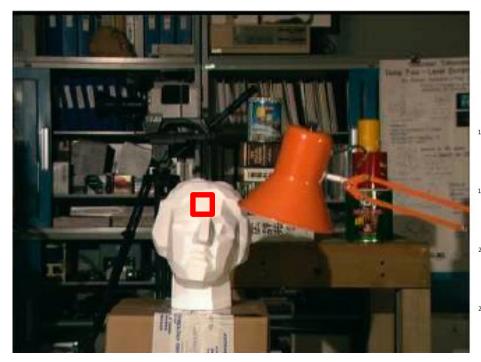
Non-Lambertian surfaces, specularities

Example: Textured neighborhood

Example: Textured neighborhood

Example: Smooth neighborhood

Window size: 1 pixel

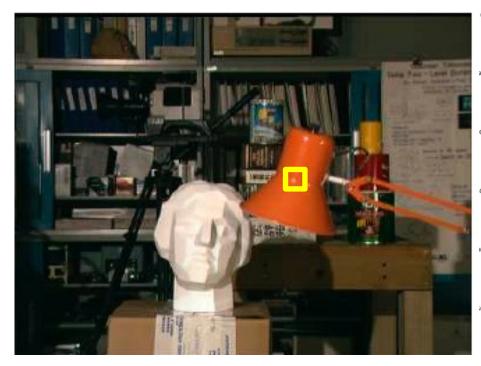


Example: Smooth neighborhood

Window size: 7 pixels

Example: Specular highlight

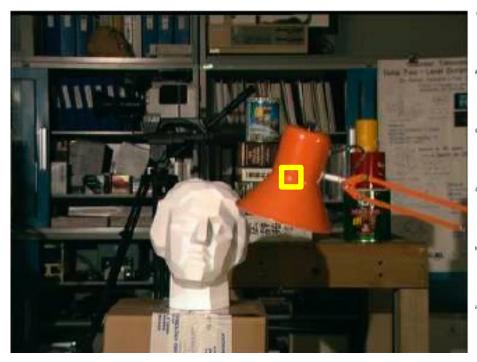
Window size: 1 pixel



Source: D. Hoiem

Example: Specular highlight

Window size: 7 pixels



Source: D. Hoiem

More interesting matching costs

Instead of SSD of pixel window, compute filter outputs for many filters SSD those

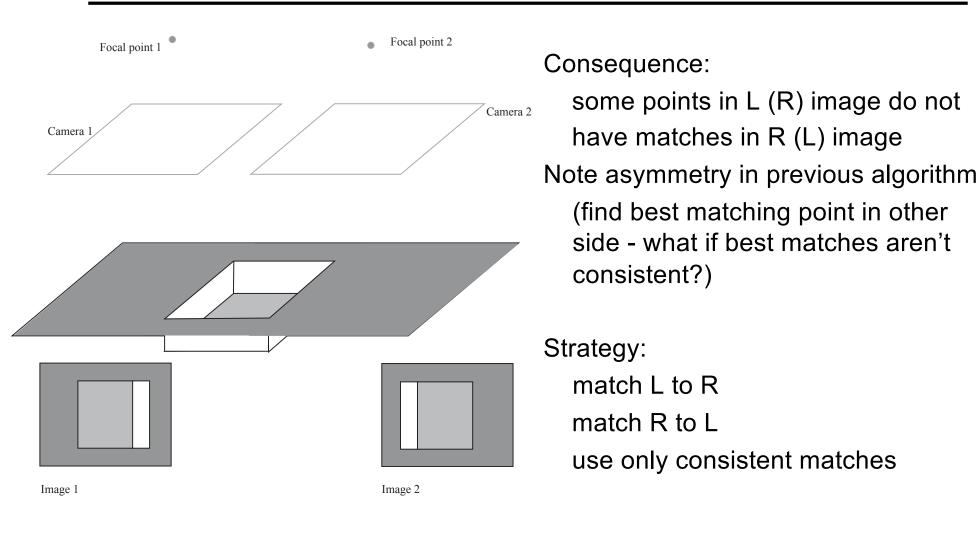
Advantage: more detailed description of points

Disadvantage: Filter support interacts badly with fast changes in depth



From Jones and Malik, "A computational framework for determining Stereo correspondences from a set of linear spatial filters

Dealing with Da Vinci

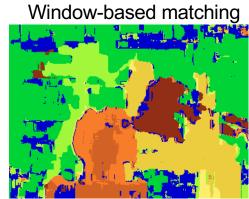


Outline

- Motivation and history
- Basic two-view stereo setup
- Local stereo matching algorithm
- Beyond local stereo matching

Stereo as optimization with non-local constraints

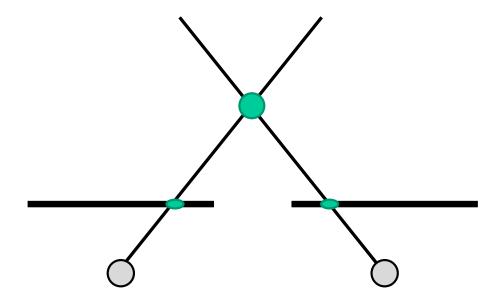
Data



Global optimization method (graph cuts)

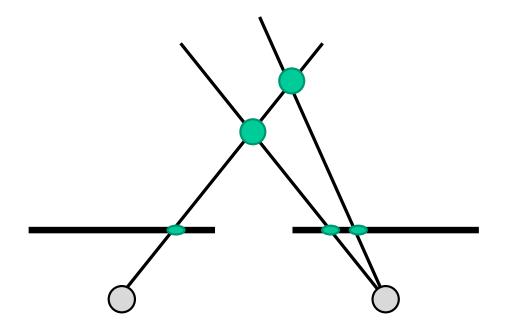
Non-local constraint: Uniqueness

- Each point in one image should match at most one point in the other image
- Does uniqueness always hold in real life?



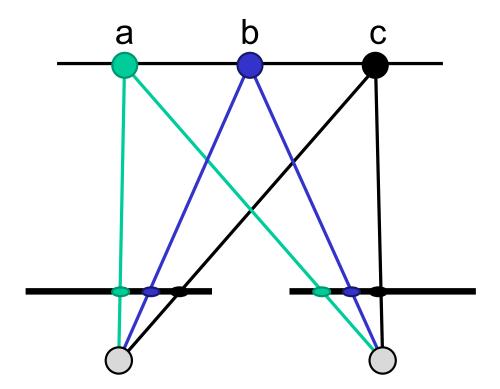
Non-local constraint: Uniqueness

- Each point in one image should match at most one point in the other image
- Does uniqueness always hold in real life?



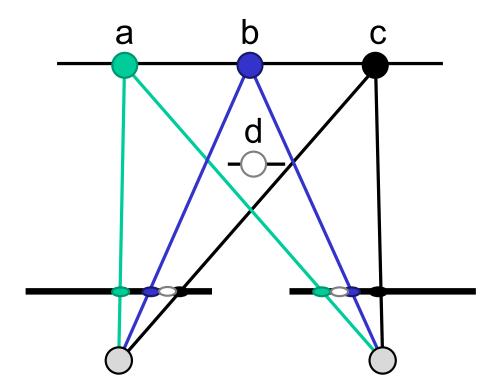
Non-local constraint: Ordering

- Corresponding points should appear in the same order
- Is ordering always preserved in real life?



Non-local constraint: Ordering

- Corresponding points should appear in the same order
- Is ordering always preserved in real life?



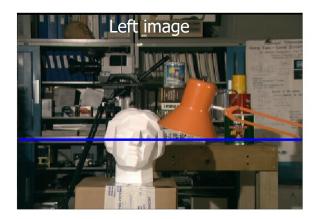
Non-local constraint: Smoothness

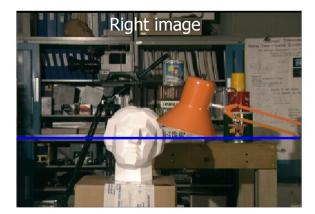
We expect disparity values to change slowly (for the most part)



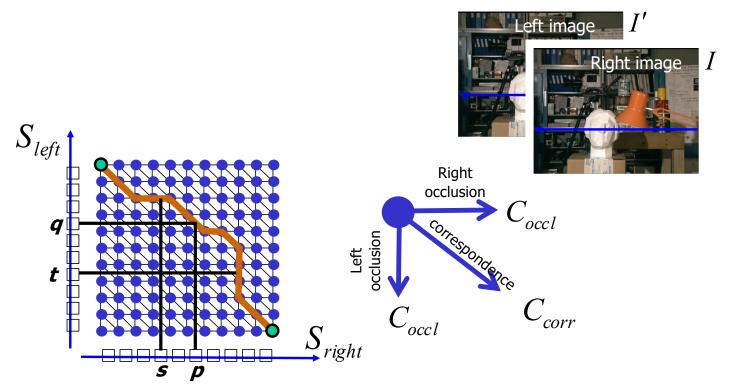
Scanline stereo by dynamic programming

- Match pixels along the entire scanline while preserving uniqueness and ordering
- Different scanlines are still optimized independently





Scanline stereo by dynamic programming

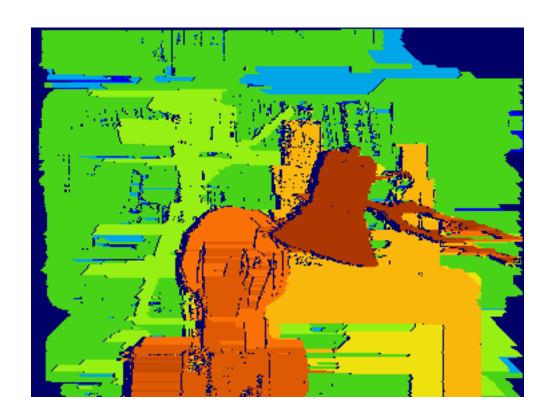


Source: Y. Boykov

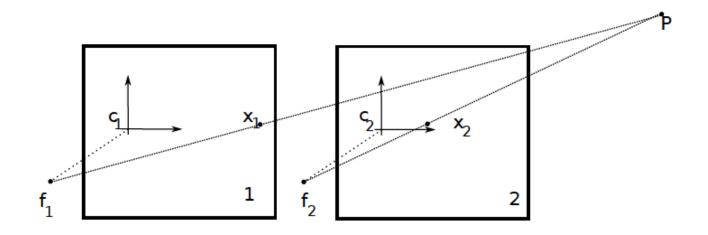
Y. Ohta and T. Kanade. Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming. IEEE Trans. PAMI, 1985

Scanline stereo by dynamic programming

Generates streaking artifacts!



Stereo as an optimization problem



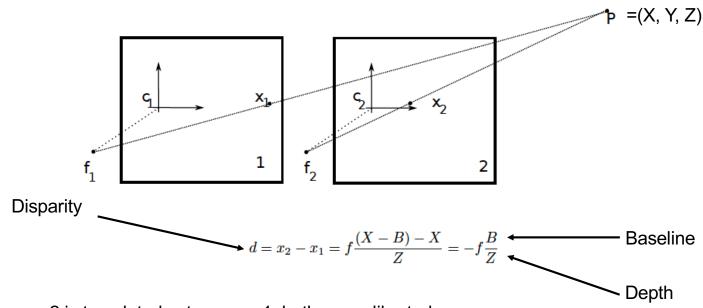
Originally:

find x_1, x_2 that match, compute depth

Now:

choose depth at x_1 that causes x_2 to be best match

Stereo as an optimization problem



Assume camera 2 is translated wrt camera 1, both are calibrated

IF you choose the right depth for x_1 , then: you know disparity, so you know x_2 and you can optimize $||color(x_1)-color(x_2(d))||^2 + smoothness(depth)$ or something like it

Quantize depth to a fixed number of levels (say, 256)

Encode depth at every pixel with a one-hot vector (say, 256 d)

$$\mathbf{w}_{1} = \begin{pmatrix} \|\mathbf{c}(x_{1}) - \mathbf{c}(x_{1} + \delta_{1})\|^{2} \\ \|\mathbf{c}(x_{1}) - \mathbf{c}(x_{1} + \delta_{2})\|^{2} \\ \|\mathbf{c}(x_{1}) - \mathbf{c}(x_{1} + \delta_{3})\|^{2} \\ \dots \\ \|\mathbf{c}(x_{1}) - \mathbf{c}(x_{1} + \delta_{256})\|^{2} \end{pmatrix}$$

$$\mathbf{d}(x_{1}) = \mathbf{d}_{1} = \begin{pmatrix} \mathbf{c} \\ \mathbf{0} \\ \dots \\ \mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \\ \dots \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

 $Cost(\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3, \ldots) = \mathbf{w}_1^T \mathbf{d}_1 + \mathbf{w}_2 \mathbf{d}_2 + \ldots + smoothness \text{ term}$

Quantize depth to a fixed number of levels (say, 256)

Encode depth at every pixel with a one-hot vector (say, 256 d)

$$Cost(\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3, \ldots) = \mathbf{w}_1^T \mathbf{d}_1 + \mathbf{w}_2 \mathbf{d}_2 + \ldots + smoothness \text{ term}$$

$$N - \sum_{i \in \text{neighbors}} \mathbf{d}_1^T \mathbf{d}_j$$

Result:

large discrete optimization problem, at least NP-hard

There are excellent approximation algorithms (below)

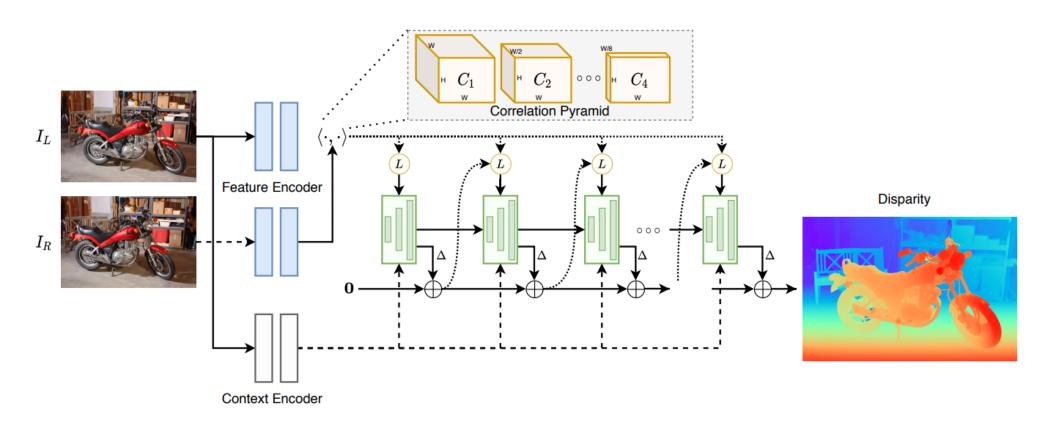
For a small set of cases, true optimum is known (by good luck)

Yield:

excellent stereo algorithms

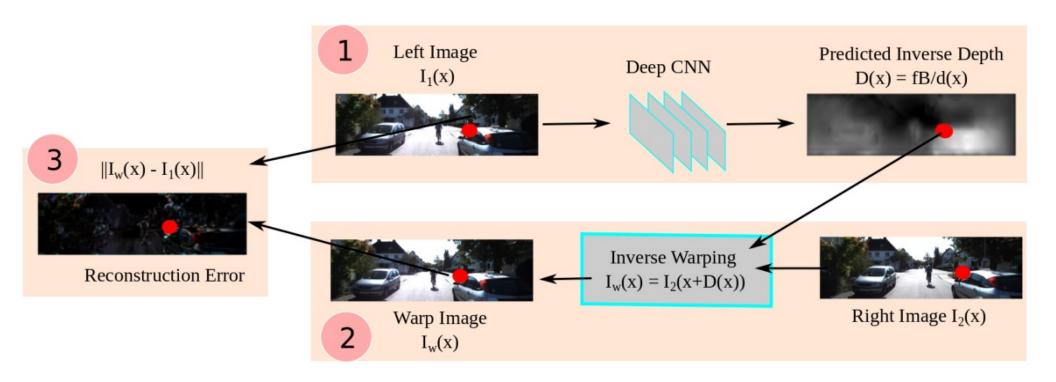
Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

Stereo matching with deep networks



L. Lipson et al. RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching. arXiv 2021

Self-supervised depth estimation



R. Garg et al. <u>Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue</u>. ECCV 2016

Stereo datasets

- Middlebury stereo datasets
- KITTI
- Synthetic data

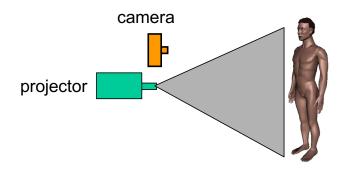
Outline

- Motivation and history
- Basic two-view stereo setup
- Local stereo matching algorithm
- Stereo with non-local optimization
- Active stereo with structured light

Active stereo with structured light

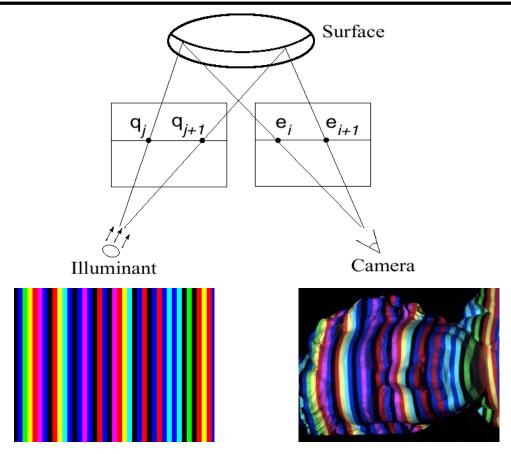


- Project "structured" light patterns onto the object
 - Simplifies the correspondence problem
 - Allows us to use only one camera



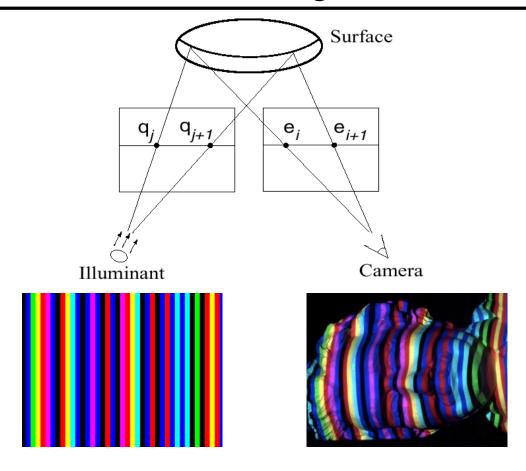
L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002

Active stereo with structured light



L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002

Active stereo with structured light

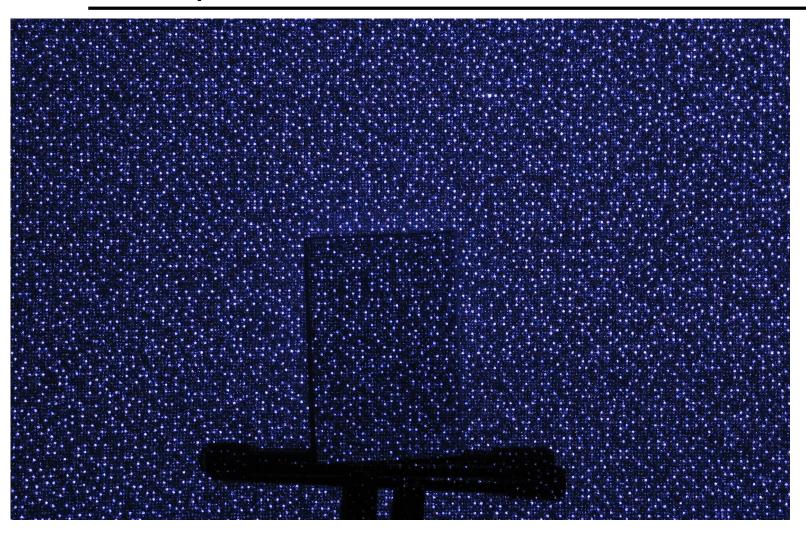


http://en.wikipedia.org/wiki/Structured-light 3D scanner

Kinect: Structured infrared light

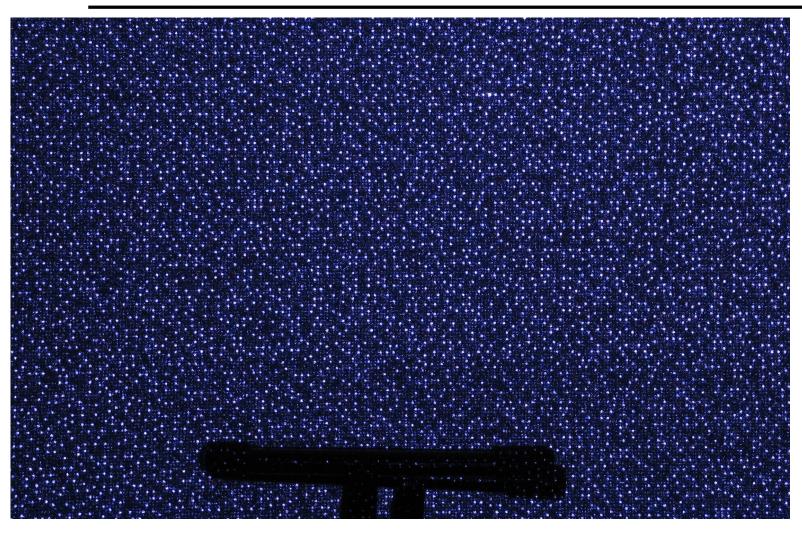
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

Example: Book vs. No Book



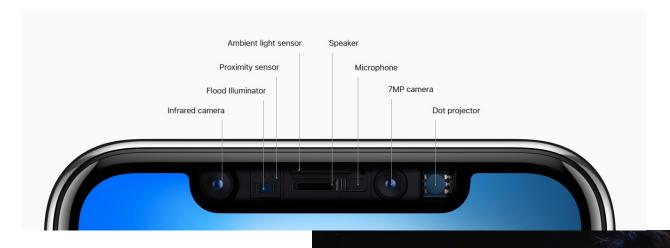
Source (via D. Hoiem)

Example: Book vs. No Book



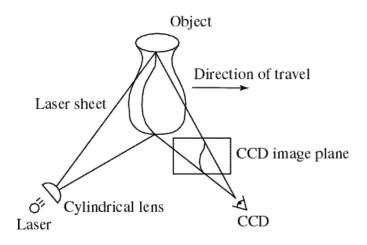
Source (via D. Hoiem)

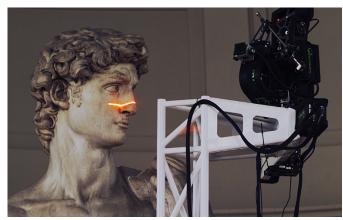
Apple TrueDepth



https://www.cnet.com/news/apple-face-id-truedepth-how-it-works/

Laser scanning





Digital Michelangelo Project Levoy et al.

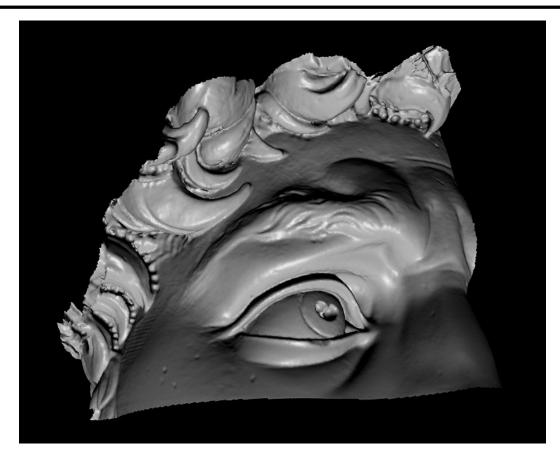
http://graphics.stanford.edu/projects/mich/

Optical triangulation

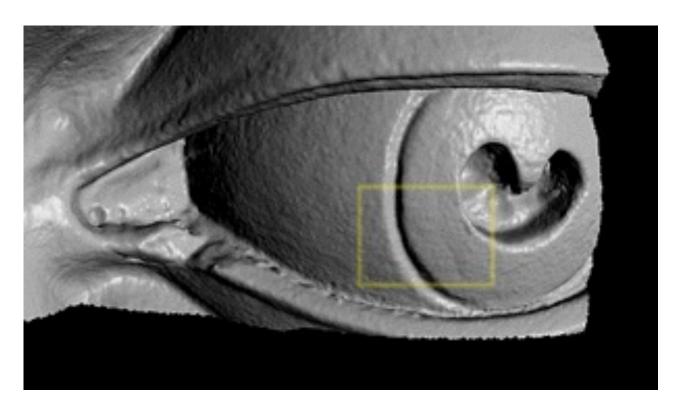
- Project a single stripe of laser light
- Scan it across the surface of the object
- This is a very precise version of structured light scanning

The Digital Michelangelo Project, Levoy et al.

The Digital Michelangelo Project, Levoy et al.

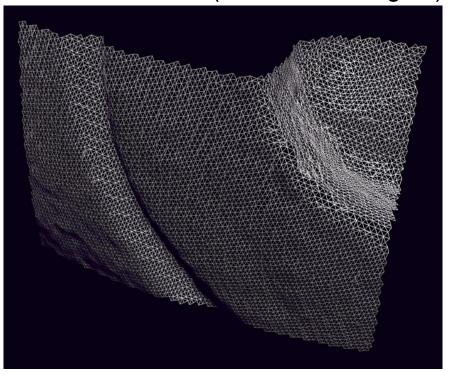


The Digital Michelangelo Project, Levoy et al.



The Digital Michelangelo Project, Levoy et al.

1.0 mm resolution (56 million triangles)



The Digital Michelangelo Project, Levoy et al.

Aligning range images

- A single range scan is not sufficient to capture a complex surface
- Need techniques to register multiple range images

B. Curless and M. Levoy, <u>A Volumetric Method for Building Complex Models from Range Images</u>, SIGGRAPH 1996

Aligning range images

- A single range scan is not sufficient to capture a complex surface
- Need techniques to register multiple range images

... which brings us to multi-view stereo