Recognition: Past, present, future?

Classification vs detection

Classification:

- thereis an X in this image
— what

Detection:
- there is an X HERE in this image
— what AND where

Key issues
- how to specify where
- relationship between what and where
— efficiency, etc
- evaluation
— surprisingly fiddly

Two threads

Localize then classify

- find boxes that likely contain objects
- decide what is in the box

YOLO: Localize while classifying
- in parallel, score
— boxes for “goodness of box”
— boxes for “what is in it”
- combine

Start simple

Where = axis aligned box

e Decide on a window shape: this is easy. There are two possibilities: a
box, or something else. Boxes are easy to represent, and are used for almost
all practical detectors. The alternative — some form of mask that cuts the
object out of the image — is hardly ever used, because it is hard to represent.

e Build a classifier for windows: this is easy — we’ve seen multiple construc-
tions for image classifiers.

e Decide which windows to look at: this turns out to be an interesting
problem. Searching all windows isn’t efficient.

e Choose which windows with high classifier scores to report: this is
interesting, too, because windows will overlap, and we don’t want to report
the same object multiple times in slightly different windows.

e Report the precise locations of all faces using these windows: this is
also interesting. It turns out our window is likely not the best available, and
we can improve it after deciding it contains a face.

Which window

Astonishing fact
- Easy to tell whether a region is likely to be an object
— even if you don’t know what object (Endres+Hoiem, 10; Uijlings et al 12)
— if it's an object
- there’s contrast with surroundings in texture, etc
— if not
- often neighbor region is similar

Selective Search

Construct hierarchy of image regions
- using a hierarchical segmenter

Rank regions using a learned score
Make boxes out of high-ranking regions

Selective search pipeline

Ground truth
- o~

Model False Positives Training Examples
Positive examples m’
Train SVM Search for ———— Add to training ’i
—— ey —————G -
(Histogram |n:rsecﬂon false positive: - examples
Difficult negatives Kemei)
—
if overlap with
positive 20-50%
Retrain

Figure 3: The training procedure of our object recognition pipeline. As positive learning examples we use the ground truth. As negatives
we use examples that have a 20-50% overlap with the positive examples. We iteratively add hard negatives using a retraining phase.

Uijlings et al, 12

You need to search at multiple scales

Figure 2: Two examples of our selective search showing the necessity of different scales. On the left we find many objects at different
scales. On the right we necessarily find the objects at different scales as the girl is contained by the tv.

Simplest detector

Use selective search to propose boxes
Check boxes with classifier

BUT
- boxes likely overlap - non-maximum suppression

- boxes likely in poor location - bounding box
regression

Selective

FIGURE 18.6: A schematic picture of how R-CNN works. A picture of Inkosi Albert
Luthuli is fed in to selective search, which proposes possible boxes; these are cut
out of the image, and reshaped to fized size; the bores are classified (scores next
to each boz); mon-mazimum suppression finds high scoring bores and suppresses
nearby high scoring boxes (so his face isn’t found twice); and finally bounding box
regression adjusts the corners of the box to get the best fit using the features inside
the bozx.

Non maximum suppression

Deciding which windows to report presents minor but important problems.
Assume you look at 32 x 32 windows with a stride of 1. Then there will be many
windows that overlap the object fairly tightly, and these should have quite similar
scores. Just thresholding the value of the score will mean that we report many
instances of the same object in about the same place, which is unhelpful. If the
stride is large, no window may properly overlap the object and it might be missed.
Instead, most methods adopt variants of a greedy algorithm usually called non-
maximum suppression. First, build a sorted list of all windows whose score is
over threshold. Now repeat until the list is empty: choose the window with highest
score, and accept it as containing an object; now remove all windows with large
enough overlap on the object window.

Bounding box regression

Deciding precisely where the object is also presents minor but important prob-
lems. Assume we have a window that has a high score, and has passed through
non-maximum suppression. The procedure that generated the window does not
do a detailed assessment of all pixels in the window (otherwise we wouldn’t have
needed the classifier), so this window likely does not represent the best localization
of the object. A better estimate can be obtained by predicting a new bounding

box using a feature representation for the pixels in the current box. It’s natural to
use the feature representation computed by the classifier for this bounding box
regression step.

Selective

FIGURE 18.6: A schematic picture of how R-CNN works. A picture of Inkosi Albert
Luthuli is fed in to selective search, which proposes possible boxes; these are cut
out of the image, and reshaped to fized size; the bores are classified (scores next
to each boz); mon-mazimum suppression finds high scoring bores and suppresses
nearby high scoring boxes (so his face isn’t found twice); and finally bounding box
regression adjusts the corners of the box to get the best fit using the features inside
the bozx.

Neural net Cro Neural - i
‘ \ 'rop eural net Non-max Bounding box
Image —3p! feature —> ROIs [ROT pool 1 Classifier —> Suppression regression —>
stack
Selective
Search

FIGURE 18.7: Fust R-CNN is much more efficient than R-CNN, because it computes
a single feature map from the image, then uses the boxes proposed by selective search
to cut regions of interest (ROI’s) from it. These are mapped to a standard size by
a ROI pooling layer, then presented to a classifier. The rest should be familiar.

Configuration spaces

You should think of a box as a point in a 4D space
- configuration space of the boxes

Selective search is weird
- networks don’t do lists much

Alternative
- sample the configuration space on some form of grid
— eg three aspect ratios, three scales, grid of locations
— important: many possible sampling schemes

- check each sample with rank score Anchor boxes

a7

Image

FIGURE 18.8: Faster RCNN wuses two networks.
“objectness” scores for a sampling of possible image bozes.
“anchor bozxes”) are each centered at a grid point. At each grid point, there are nine
boxes (three scales, three aspect ratios). The second is a feature stack that computes
a representation of the image suitable for classification.
objectness score are then cut from the feature map, standardized with ROI pooling,
then passed to a classifier. Bounding box regression means that the relatively coarse

Neural net
feature
stack

—> Rrois [

Crop

ROI pool

Neural net
Classifier

;5

Box proposal
network

Box non-max
Suppression

Non-max
Suppression

Bounding box
regression

The boxes with highest

One uses the image to compute
The samples (called

sampling of locations, scales and aspect ratios does not weaken accuracy.

Evaluating detectors

Compare detected boxes w ground truth boxes

Favor
- right number of boxes with right label in right place

Penalize

- awful lot of boxes
- multiple detections of the same thing

Strategy

Strategy:

- Detector makes a ranked list of boxes

- GT is a list of boxes

- Mark detector boxes with relevant/irrelevant
- summarize lists

Marking boxes:

- All are irrelevant, then
- For each GT box:
— Overlap measured as 10U (intersection over union)
— Find highest ranking box with largest overlap
— mark relevant if IOU> threshold

Precision

(number of relevant boxes marked)/(total number of boxes marked

Average precision

Plot curve by computing recall, precision
Obtained by taking top k boxes in list for
Different values of k

Average precision is area under curve

>
»

Recall = (Number of relevant boxes marked)/(Total number of relevant boxes)

Strategy

Strategy:
- Detector makes a ranked list of boxes
- GTis a list of boxes
- Mark detector boxes with relevant/irrelevant
- summarize lists

Summarize lists:

« Sort by box ranking
« Compute AP per class
« Compute average of AP

« MAP atIOU 0.5 has been standard for a while
« Higher IOU’s are harder.

YOLO

YOLO v8 is about as fast and accurate as you can get
link on webpage

key idea

- look at box scores, label values independently

We split the image into a grid

e SO i Y \ : b ot
0 e~ T R A s T i ek . P
o« ‘ ~ - T ar PN

s] B
b > ¥]

Each cell predicts boxes and confidences: P(Object)

Each cell predicts boxes and confidences: P(Object)

e Y O [

Each cell predicts boxes and confidences: P(Object)

redicts boxes and confidences: P(Object)

w
I ",

e Al R ek) - O

Each cell predicts boxes and confidences: P(Object)

—— 0y ——

Y

Each cell also predicts a class probability.

Each cell also predicts a class probability.

Bicycle

Dog

EIIII Table.

Conditioned on object: P(Car | Object)

Bicycle

Dog

EIIIII Table

Then we combine the box and class predictions.

This parameterization fixes the output size

Each cell predicts:

- For each bounding box:

4 coordinates (x,y, w, h)
1 confidence value

- Some number of class
probabilities

For Pascal VOC:

- 7x7 grid
- 2 bounding boxes / cell
- 20 classes

7x7x(2x5+20)=7x7x30tensor = 1470 outputs

1st - 5th
Box #1

6th - 10th
Box #2

11th - 30th
Class Probabilities

Thus we can train one neural network to be a whole
detection pipeline

N

48
77@
224

3
3
448
7 = 7
Al | X ﬂx
—J 7 7
3 1024 4094

64

Conv. Layer Convolutional Layers Conn. Layer Conn. Layer
7x7x64-5-2 Detection Layer

I
e . 1 S TN

Evaluation, YOLOvVS8

) val Speed Speed
Model size mAP CPUONNX = A100 TensorrT Params FLOPs
(pixels) 50-95 (M) (B)
(ms) (ms)

YOLOvVS8n 640 37.3 80.4 0.99 3.2 8.7
YOLOvS8s 640 44.9 128.4 1.20 11.2 28.6
YOLOvBm = 640 50.2 234.7 1.83 25.9 78.9
YOLOvSI 640 52.9 375.2 2.39 43.7 165.2
YOLOv8x 640 53.9 479.1 3.53 68.2 257.8

https://github.com/ultralytics/ultralytics

YOLOvV8 Tuning

55 _—
50 A
a
o3 45 7
n>
z
€ 40 A
o
O
O 35 - —e— YOLOvV8
© YOLOV7
30 - w YOLOV6-2.0
YOLOV5-7.0
0 20 40 60 80

Parameters (M)

COCO mAP2 =9

55 —-
50 -
45 -
40
35 1 —e— YOLOVS
Fast YOLOV?
30 - 4& YOLOV6-2.0
YOLOV5-7.0
1.0 1.5 2.0 2.5 3.0 3.5

Latency A100 TensorRT FP16 (ms/img)

SOA and variants: rough summary

Very accurate detection for hundreds of categories

- with enough training data
- important variations in training data available
— you don’t have to put a box on everything

YOLO allows a tradeoff between speed and accuracy
- and can be very fast

Variants

Localization more accurate than boxes
Incorporate LIDAR, etc.

Boxes in 3D rather than 2D

Variant feature constructions are very important

Ghost(s) at the party

Object detection [73]

Tremblay et al 20

