Recognition: Past, present, future?




Straightforward image classification

We know basics for two class classification
Image encoder + Logistic regression
train encoder parameters, Ir parameters with training data
evaluate with test data

Open:
more than two classes
best encoder



Image classification

Image

Some neural stuff;
differentiable wrt
parameters, input
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Under the hood
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Multiclass logistic regression
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FIGURE 7.3: Three different representations of the simple network used to classify
CIFAR-10 images for this example. Details in the text.



FIGURE 7.7: Visualizing the patterns that the final stage ReLU’s respond to for the
simple CIFAR example. FEach block of images shows the images that get the largest
output for each of 10 ReLU’s (the ReLU’s were chosen at random from the 6}
available in the top ReLU layer). Notice that these ReLU outputs don’t correspond
to class — these outputs go through a fully connected layer before classification — but
each ReLU are clearly responds to a pattern, and different ReLU’s respond more
strongly to different patterns.



Classification variants

Predict more labels with complex semantics

Predict a cost function from the image
- report the minimum

This allows
- Visual question answering
— function accepts question, offered answers and takes min at best
- Writing sentences
— choose sentence that minimizes cost



Situations
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Yatskar+Zettlemoyer+Farhadi 2016



Visual Question Answering

Q. What is the cat wearing? Q. What is the weatherlike? Q. What surface is this?
A. Hat A. Rainy A. Clay

[ . . - ‘
Q. What is the weather like? Q. What coloris the cat's eyes? Q. What toppings are on the pizza?
A. Sunny A. Green A. Mushrooms

Figure 1.22  Visual question answering systems produce natural language answers to
questions about images. It is difficult for a VQA system to hide ignorance in the way that a
captioning system can. Here the system is producing quite sensible answers to rather difficult
questions about the image (answers are typically chosen from a multiple choice set). Figure
courtesy of Devi Parikh, produced by a system described in “Making the V in VQA Matter:
Elevating the Role of Image Understanding in Visual Question Answering”’ by Goyal, Khot,
Summers-Stay, Batra, and Parikh and published in CVPR 2017.




doesn’t always work...

How many holes are in the pizza?
8 A. Brown

| 8
Q.
A.

Q. What letter is on the racket?
A w

Q. Why is the sign bent?
A. It's not

Figure 1.23  Because it is difficult for a VQA system to hide ignorance in the way that
a captioning system can, the mistakes can be informative and highlight how difficult it is
to produce accurate visual representations. For example, the system is guessing about the
number of holes in a pizza, because it doesn’t understand the conventions about what holes
are worth talking about, and it has real difficulty counting. Similarly, the system is describing
the cat’s leg as brown because it can’t localize the leg properly. Figure courtesy of Devi
Parikh, produced by a system described in “Making the V in VQA Matter: Elevating the
Role of Image Understanding in Visual Question Answering” by Goyal, Khot, Summers-
Stay, Batra, and Parikh and published in CVPR 2017.




Sentence generation

Decode features into sentence (with LSTM, etc)
- essentially classification with funky taxonomy

A baby eating a piece:ffood in A young boy eating a piece of cake
his mouth.

Angja et al, 2018



doesn’t always work...

And scoring system is easily subverted!

A small bird is perched on a branch A small brown bear is sitting

in the grass

Angja et al, 2018



*

Can train encoder *without labels

Encoder yields embedding of the image

Exploit data augmentation

- take image and
— crop+resize; adjust colormap; etc

Strategy: Contrastive learning

- Adjust embedding so that
— A and Augment(A) should be close
— A and B should be far

Then multiclass logistic regression when you have labels



SOA - rough summary

Very high accuracy with 1000’s of classes
- Using
— very deep residual networks
- clever trick to improve training convergence
— alternative feature construction methods

Classification wrt
- Object present

- Scene type
- Etc

Challenges
- tough with little training data (but encoders are somewhat interchangeable)
- change in dataset presents problems



Open questions

Rules of machine learning

- It all works when test data is “like” training data
— |ID samples from the same distribution
- All bets are off otherwise; very little theoretical support

Practice in computer vision

- ltis tough to tell when this condition occurs
- Mostly, itisn’'t imposed
— instead, we say that there was a generalization failure when classifier
doesn’t work

Q: Why don’t we get in trouble when we break the rules?

Q: Tell when datasets A, B are “compatible”
- In a crisp, formal way (rather than try and see)



Exploiting registration and classification

Use a classifier to tell:
- how far to the next intersection? 7 1 3\
- what s it like? A\
- is there a bike lane? A

- etc. Pred = 18.5 m




Road layout maps

Potential cues
- streetview
- openmaps



Partially supervised cues

Open Street Maps (OSM)

|

Map data: OpenStreetMap is an open-source mapping
project covering over 21 million miles of road. Unlike pro-
prietary maps, the underlying road coordinates and metadata
are freely available for download. Accuracy and overlap with
Google Maps is very high, though some inevitable noise is
present as information is contributed by individual volunteers
or automatically extracted from users’ GPS trajectories. For
example, roads in smaller cities may lack detailed annota-
tions (e.g., the number of lanes may be unmarked). These
inconsistencies result in varying-sized subsets of the data
being applicable for different attributes.

Seff+Xiao
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Fig. 3. Intersection detection heatmap. Images are cropped from test set
GSV panoramas in the direction of travel indicated by the black arrow. The
probabilities of “approaching” an intersection output by the trained ConvNet
are overlaid on the road. (The images are from the ground level road, not
the bridge.)



Partially supervised cues

Google street view

Image collection: Google Street View contains panoramic
images of street scenes covering 5 million miles of road
across 3,000 cities. Each panorama has a corresponding
metadata file storing the panorama’s unique “pano_id”, geo-
graphic location, azimuth orientation, and the pano_ids of ad-
jacent panoramas. Beginning from an initial seed panorama,
we collect street view images by running a bread-first
search, downloading each image and its associated metadata
along the way. Thus far, our dataset contains one million
GSV panoramas from the San Francisco Bay Area. GSV
panoramas can be downloaded at several different resolutions
(marked as “zoom levels™). Finding the higher zoom levels

Seff+Xiaaunnecessary for our purposes, we elected to download at a
zoom level of 1, where each panorama has a size of 832x416
pixels.



Labelling - |

Match panoramas to roads
- panorama center location, orientation is known
- (essentially) project to plane
- thresholded nearest neighbor to road center polyline

— thresholding removes panoramas inside buildings,
etc.

- sSome noise
— under bridges, etc.

Annotations
- Intersections
- Drivable heading
- Heading angle
- Bike lane
- Speed limit, wrong way, etc.



Pred =0.1 m Pred =229 m
True=19m True =192 m True=224m

Fig. 4. Distance to intersection estimation. For images within 30 m of true
intersections, our model is trained to estimate the distance from the host car
to the center of the intersection across a variety of road types.

Seff+Xiao



Seff+Xiao

Fig. 5. Intersection topology is one of several attributes our model learns
to infer from an input GSV panorama. The blue circles on the Google
Maps extracts to the left show the locations of the input panoramas. The
pie charts display the probabilities output by the trained ConvNet of each
heading angle being on a driveable path (see Figure 3 for colormap legend).




p(driveable) = 0.002 p(driveable) =0.714 p(driveable) = 0.998

Fig. 6. Driveable headings. A ConvNet is trained to distinguish between
non-drivable headings (left) and drivable headings aligned with the road
(right). The ConvNet weakly classifies the middle example as drivable
because the host car’s heading is facing the alleyway between the buildings.

Seff+Xiao



Pred =-52.7° Pred =-18.3° Pred =31.6°
True = -49.1° True =-20.5° True =32.7°
Seff+Xiao
Fig. 7. Heading angle regression. The network learns to predict the
relative angle between the street and host vehicle heading given a single
image cropped from a GSV panorama. Below each GSV image, the graphic
visualizes the ground truth heading angle.



p(bike lane) = 0.043 p(bike lane) = 0.604 p(bike lane) = 0.988

Fig. 8. The ConvNet learns to detect bike lanes adjacent to the vehicle.
The GSV images are arranged from left to right in increasing order of
probability output by the ConvNet of a bike lane being present (ground
truth labels from left to right are negative, negative, positive). The middle
example contains a taxi lane, resulting in a weak false positive.

Seff+Xiao



Pred = 26.1 mph Pred = 30.0 mph Pred = 54.3 mph
True = 30 mph True = 50 mph True = 50 mph

Fig. 9. Speed limit regression. The network learns to predict speed limits
given a GSV image of road scene. The model significantly underestimates
the speed limit in the middle example as this type of two-way road with a
single lane in each direction would generally not have a speed limit as high
as 50 mph.

Seff+Xiao



p(one-way) = 0.207 p(one-way) = 0.226 p(one-way) = 0.848

Fig. 10. One-way vs. two-way road classification. The probability output
by the ConvNet of each GSV scene being on a one-way road is shown.
From left to right the ground truth labels are two-way, two-way, and one-

way. The image on the left is correctly classified as two-way despite the
absence of the signature double yellow lines.

Seff+Xiao



p(wrong way) =0.555 p(wrong way) =0.042  p(wrong way) =0.729

Fig. 11. Wrong way detection. The probability output by the ConvNet of
each GSV image facing the wrong way on the road is displayed. From left
to right the ground truth labels are wrong way, right way, and right way. For
two-way roads with no lane markings (left), this is an especially difficult
problem as it amounts to estimating the horizontal position of the host car.
The problem can also be quite ill-defined if there are no context clues as is
the case with the rightmost image.

Seff+Xiao



Pred=2 Picd =2 Pred. =3
True =1 True =2 True=2

Fig. 12.  Number of lanes estimation. The predicted and true number
of lanes for three roads are displayed along with the corresponding GSV
images. For streets without clearly visible lane markings (left), this is
especially challenging. Although the ground truth for the rightmost image
1s two lanes, there is a third lane that merges just ahead.

Seff+Xiao



At this point

| can tell from an image whether
- I'm pointing in the right direction
- going the right way
- facing an intersection
- available turns, etc.
- what and where street signs are

Can | build a reliable controller?



BIG GOOD QUESTIONS

Mashup of openmaps and street view
- it could predict drivable directions, steering directions, lanes, signs, etc.

Q: WHY IS THIS NOT DRIVING AROUND NOW?

- A: (pretty obviously) because it doesn’t work

Q: WHY NOT?

- A:interesting



Data Distribution Mismatch!
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Imitation learning

Approaches

- Imitation learning:
— Train a policy that does “the same thing” as an expert

Road Intensity 45 Direction
Feedback Unit Output Units

8x32 Range Finder
Input Retina

Real Road Image Simulsted Road Image

30x32 Video
Input Retina

“In addition, the network must not solely be shown examples of accurate driving, but also how to recover
(i.e. return to the road center) once a mistake has been made. Partial initial training on a variety of
simulated road images should help eliminate these difficulties and facilitate better performance. “ ALVINN:
An autonomous Land vehicle in a neural Network, Pomerleau 1989



Demonstration Augmentation: NVIDIA 2016
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“DAVE-2 was inspired by the pioneering work of Pomerleau [6] who in 1989 built the Autonomous Land
Vehicle in a Neural Network (ALVINN) system. Training with data from only the human driver is not
sufficient. The network must learn how to recover from mistakes. ...”,

Fl'ag Egjdéﬁild NB-njng for Self-Driving Cars , Bojarski et al. 2016
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