Recognition: Past, present, future?




Last time: Overview of recognition

 Brief history of recognition

» Different “dimensions” of recognition
« What type of content?
« What type of output?
 What type of supervision?

 Trends
« Saturation of supervised learning
« Transformers
* Vision-language models
« “Universal” recognition systems
« Text-to-image generation

From vision to action



Recognition: What type of supervision?

Semi-supervised:
labels for a small portion
of training data

Weakly supervised:

Unsupervised: noisy labels, labels not
no labels exactly for the task of
interest

Self-supervised:
same as unsupervised?

Supervised:
clean, complete
training labels
for the task of
interest



Unsupervised learning

« Clustering
» Discover groups of “similar” data points
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Unsupervised learning

Dimensionality reduction, manifold learning

* Discover a lower-dimensional surface on which the data lives
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D. Kingma and M. Welling, Auto-Encoding Variational Bayes, ICLR 2014


https://arxiv.org/pdf/1312.6114.pdf
https://arxiv.org/pdf/1312.6114.pdf
https://arxiv.org/pdf/1312.6114.pdf

Unsupervised learning

* Learning the data distribution

* Density estimation: Find a function that approximates the probability
density of the data (i.e., value of the function is high for “typical”
points and low for “atypical” points)

* An extremely hard problem for high-dimensional data...




Unsupervised learning

* Learning the data distribution

* Learning to sample: Produce samples from a data distribution that
mimics the training set

Generative adversarial networks (GANSs)

lan Goodfellow ,
y @goodfellow_ian

4.5 years of GAN progress on face generation.
arxiv.org/abs/1406.2661 arxiv.org/abs/1511.06434
arxiv.org/abs/1606.07536 arxiv.org/abs/1710.10196
arxiv.org/abs/1812.04948
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https://arxiv.org/abs/1511.06434

Unsupervised learning

Learning the data distribution

* Learning to sample: Produce samples from a data distribution that
mimics the training set

Denoising diffusion probablllstlc models (DDPMs)
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https://hojonathanho.github.io/diffusion/

Self-supervised or predictive learning

« Use part of the data to predict other parts of the data

 Example: Image colorization

R. Zhang et al., Colorful Image Colorization, ECCV 2016



http://richzhang.github.io/colorization/

Prediction 1

Prediction 2

Self-supervised or predictive learning

« Use part of the data to predict other parts of the data
« Example: Future prediction

J. Walker et al. An_ Uncertain Future: Forecasting from C. Finn and S. Levine. Deep Visual Foresight for Planning

Static Images Using Variational Autoencoders. ECCV 2016 Robot Motion. ICRA 2017. YouTube video



https://arxiv.org/pdf/1610.00696.pdf
https://arxiv.org/pdf/1610.00696.pdf
https://www.youtube.com/watch?v=6k7GHG4IUCY
http://arxiv.org/pdf/1606.07873.pdf
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Self-supervised or predictive learning

« Use part of the data to predict other parts of the data
« Example: Grasp prediction

L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50K tries and 700 robot hours. ICRA 2016

YouTube video



https://arxiv.org/pdf/1509.06825.pdf
https://arxiv.org/pdf/1509.06825.pdf
https://arxiv.org/pdf/1509.06825.pdf
https://www.youtube.com/watch?v=oSqHc0nLkm8

Beyond batch offline learning

« Reinforcement learning
* Active learning
 Lifelong learning



Reinforcement learning

« Learn from (possibly sparse) rewards in a sequential
environment

Playing video games

DQN

Input

Image convolutions

Hidden layers

Output

Video

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, |. Antonoglou, D. Wierstra, M. Riedmiller,
Human-level control through deep reinforcement learning, Nature 2015



https://youtu.be/cjpEIotvwFY
http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf
http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf
http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Reinforcement learning

« Learn from (possibly sparse) rewards in a sequential

environment
Sensorimotor learning

Fig. 1: Our method learns visuomotor policies that directly
use camera image observations (left) to set motor torques on
a PR2 robot (right). Video

S. Levine, C. Finn, T. Darrell and P. Abbeel, End-to-End Training of Deep Visuomotor Policies, JMLR 2016



https://sites.google.com/site/visuomotorpolicy/
http://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1504.00702

Active learning

* The learning algorithm can choose its own training examples,
or ask a “teacher” for an answer on selected inputs

Annotators
Current / -
»| category ssue request:
models “Get a full
segmentation on
image #31.”

"ﬂ‘ 5 ,' 2

Partially and weakly Labeled data
labeled data

Unlabeled data

S. Vijayanarasimhan and K. Grauman. Cost-Sensitive Active Visual Category Learning. IJCV 2010



http://vision.cs.utexas.edu/projects/others/ijcv-preprint.pdf
http://vision.cs.utexas.edu/projects/others/ijcv-preprint.pdf
http://vision.cs.utexas.edu/projects/others/ijcv-preprint.pdf

Lifelong or continual learning

Figure 1: Wanderlust: Imagine an embodied agent is walking on the street. It may observe new classes and old classes
simultaneously. The agent needs to learn fast given only a few samples (red) and recognize the subsequent instances of the
class once a label has been provided (green). In this work, we introduce a new online continual object detection benchmark
through the eyes of a graduate student to continuously learn emerging tasks in changing environments.

J. Wang et al. Wanderlust: Online Continual Object Detection in the Real World. ICCV 2021



https://oakdata.github.io/

Outline

 Brief history of recognition
+ Different “dimensions” of recognition

What type of content?
What type of output?
What type of supervision?

* Trends

Saturation of supervised learning
Transformers

Vision-language models
“Universal” recognition systems
Text-to-image generation

From vision to action



Outgrowing ImageNet
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Figure source


http://www.image-net.org/challenges/LSVRC/
https://web.eecs.umich.edu/~justincj/slides/eecs498/WI2022/598_WI2022_lecture01.pdf

Outgrowing ImageNet
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Figure 1: When presented with a model’s pre-
diction and the original ImageNet label, hu-
man annotators now prefer model predictions
on average (Section 4). Nevertheless, there
remains considerable progress to be made be-

fore fully capturing human preferences. “Programmer”
K. Yang, K. Qinami, L. Fei-Fei, J. Deng, O. Russakovsky, Towards Fairer
L. Beyer et al. Are we done with ImageNet? arXiv 2020 Datasets: Filtering and Balancing the Distribution of the People Subtree in the

ImageNet Hierarchy, FAccT 2020



https://arxiv.org/pdf/2006.07159.pdf
http://image-net.org/filtering-and-balancing/
http://image-net.org/filtering-and-balancing/
http://image-net.org/filtering-and-balancing/

Transformers
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Image source


http://jalammar.github.io/illustrated-transformer/
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Transformers

t

Feed Forward

4

Encoder-Decoder Attention

4

ENCODER A
(, 1 )
( Feed Forward )
A
( Self-Attention )
L rY J
1

N ( ([ )

Self-Attention

A AU

t

A. Vaswani et al., Attention is all you need, NeurlPS 2017

Image source


http://jalammar.github.io/illustrated-transformer/
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Transformers for everything: Detection transformer
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N. Carion et al. End-to-end object detection with transformers. ECCV 2020



https://arxiv.org/pdf/2005.12872.pdf
https://arxiv.org/pdf/2005.12872.pdf
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https://arxiv.org/pdf/2005.12872.pdf
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Vision transformer (ViT) — Google

« Split an image into patches, feed linearly projected patches into

standard transformer encoder

«  With patches of 14x14 pixels, you need 16x16=256 patches to represent 224x224 images
« Self-supervised task: masked prediction (similar to BERT)
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A. Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021



https://arxiv.org/pdf/2010.11929.pdf

Vision transformer (ViT)
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Figure 3: Transfer to ImageNet. While
large ViT models perform worse than BiT
ResNets (shaded area) when pre-trained on
small datasets, they shine when pre-trained on
larger datasets. Similarly, larger ViT variants
overtake smaller ones as the dataset grows.

BiT: Big Transfer (ResNet)

VIT: Vision Transformer (Base/Large/Huge,
patch size of 14x14, 16x16, or 32x32)

JFT-300M Internal Google dataset (not public)

A. Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021



https://arxiv.org/pdf/1912.11370.pdf
https://ai.googleblog.com/2017/07/revisiting-unreasonable-effectiveness.html
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Masked autoencoders
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Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images to produce representations for recognition tasks.

K. He et al. Masked autoencoders are scalable vision learners. CVPR 2022



https://arxiv.org/pdf/2111.06377.pdf

Masked autoencoders

Figure 2. Example results on ImageNet validation images. For each triplet, we show the masked image (left), our MAE reconstruction’
(middle), and the ground-truth (right). The masking ratio is 80%, leaving only 39 out of 196 patches. More examples are in the appendix.
TAs no loss is computed on visible patches, the model output on visible patches is qualitatively worse. One can simply overlay the output with the visible
patches to improve visual quality. We intentionally opt not to do this, so we can more comprehensively demonstrate the method’s behavior.

K. He et al. Masked autoencoders are scalable vision learners. CVPR 2022



https://arxiv.org/pdf/2111.06377.pdf
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Figure 8. MAE pre-training vs. supervised pre-training, evalu-
ated by fine-tuning in ImageNet-1K (224 size). We compare with
the original ViT results [16] trained in IN1K or JFT300M.

APbox
method pre-traindata ViT-B  ViT-L
supervised INIK w/labels  47.9 49.3
MoCov3  IN1K 479 49.3
BEIiT IN1K+DALLE 49.8 53.3
MAE IN1K 50.3 53.3

Table 4. COCO object detection and segmentation using a ViT
Mask R-CNN baseline. All entries are based on our implementa-
tion. Self-supervised entries use IN1K data without labels. Mask
AP follows a similar trend as box AP.

K. He et al. Masked autoencoders are scalable vision learners. CVPR 2022



https://arxiv.org/pdf/2111.06377.pdf

Convolutional networks or transformers?
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Original ViT (baseline, termed ViT)):

o Sensitive to Ir and wd choice

o Converges slowly

o Works with AdamW, but not SGD

o Underperforms sota CNNs on ImageNet

Ours (termed ViT, same runtime):

v’ Robust to Ir and wd choice

v’ Converges quickly

v' Works with AdamW, and also SGD

v’ Outperforms sota CNNs on ImageNet

T. Xiao et al. Early convolutions help transformers see better. NeurlPS 2021



https://papers.nips.cc/paper/2021/file/ff1418e8cc993fe8abcfe3ce2003e5c5-Paper.pdf

Hierarchical transformer: Swin
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classification  detection ... classification
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Figure 1. (a) The proposed Swin Transformer builds hierarchical
feature maps by merging image patches (shown in gray) in deeper
layers and has linear computation complexity to input image size
due to computation of self-attention only within each local win-
dow (shown in red). It can thus serve as a general-purpose back-
bone for both image classification and dense recognition tasks.
(b) In contrast, previous vision Transformers [19] produce fea-

ture maps of a single low resolution and have quadratic compu-
%’ A ,é%/;l;é{;/x = = tation complexity to input image size due to computation of self-
W e e 16~ attention globally.
s S Zes
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Z. Liu et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. ICCV 2021



https://openaccess.thecvf.com/content/ICCV2021/papers/Liu_Swin_Transformer_Hierarchical_Vision_Transformer_Using_Shifted_Windows_ICCV_2021_paper.pdf

Hierarchical transformer: Swin
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Z. Liu et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. ICCV 2021
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Beyond transformers?

e |
1 Skip-connections Skip-connections Mixer Layer |
: Channels :
| = Patches A _ I
. ™ o o —(MLP | }—» g |
Z > g - —{ MLP 1 }—» /T\\ z
e e 5 \Ir2 e 2 |
1 kima i’ o —(MLP1 }—» z !
I = = I
e e e e e e e e e e e o = e = = = = = = = = = - - - - - J
Class

Fully-connected

Global Average Pooling

[ ]
.

N x (Mixer Layer)

¢¢¢¢¢¢¢¢¢

Per-patch Fully-connected

//‘D—Ll I lI*DI//l' |$1,

= 3 o~

Figure 1: MLP-Mixer consists of per-patch linear embeddings, Mixer layers, and a classifier head.
Mixer layers contain one token-mixing MLP and one channel-mixing MLP, each consisting of two
fully-connected layers and a GELU nonlinearity. Other components include: skip-connections,
dropout, and layer norm on the channels.

|. Tolstikhin et al. MLP-Mixer: An all-MLP Architecture for Vision. NeurlPS 2021



https://papers.nips.cc/paper/2021/file/cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Paper.pdf
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Beyond transformers?
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W. Yu et al. MetaFormer is Actually What You Need for Vision. CVPR 2022
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Outline

 Brief history of recognition

 Different “dimensions” of recognition
« What type of content?
« What type of output?
« What type of supervision?

* Trends
« Saturation of supervised learning

 Transformers
« Vision-language models



Giant vision-language models: CLIP

(1) Contrastive pre-training
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Contrastive language-image
pretraining: in a batch of N image-
text pairs, classify each text string
to the correct image and vice versa

A. Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2021

https://openai.com/blog/clip/



https://arxiv.org/pdf/2103.00020.pdf
https://openai.com/blog/clip/
https://openai.com/blog/clip/
https://openai.com/blog/clip/

Giant vision-language models: CLIP
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A. Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2021

https://openai.com/blog/clip/



https://arxiv.org/pdf/2103.00020.pdf
https://openai.com/blog/clip/
https://openai.com/blog/clip/
https://openai.com/blog/clip/

CLIP: Details

* Image encoders

ResNet-50 with self-attention layer on top of global average pooling
Vision transformer (ViT)

« Language encoder: GPT-style transformer with 63M
parameters

« Dataset: 400M image-text pairs from the Web



CLIP: Results

o Linear probe average over Kornblith et al.'s 12 datasets
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Figure 12. CLIP’s features are more robust to task shift when compared to models pre-trained on ImageNet. For both dataset
splits, the transfer scores of linear probes trained on the representations of CLIP models are higher than other models with similar
ImageNet performance. This suggests that the representations of models trained on ImageNet are somewhat overfit to their task.



CLIP: Results

Average Score (%)

90 1

Linear probe average over Kornblith et al.'s 12 datasets

L/14@336px
L/14

¢
RN50x64

res200x2

R152x4

MoCo-v2®

Linear probe average over all 27 datasets

85 1

Average Score (%)
(o]
o

~
w
1

70 A

10°

10! 102
Forward-pass GFLOPs/image

~#— CLIP-ViT —
—/#= CLIP-ResNet ——
—— EfficientNet-NoisyStudent  —r—
—— EfficientNet ——

MoCo-v2e

L/14@336px
RN50x64

10°

Instagram-pretrained
SimCLRv2

BYOL

MoCo

10

Forward-pass GFLOPs/image

—— ViT (ImageNet-21k)

—— BiT-M
—»— BIiT-S
-+— ResNet




“Universal” recognition systems: DeepMind GATO

o« /A

S. Reed et al. A generalist agent. TMLR 2022



https://openreview.net/pdf?id=1ikK0kHjvj

“Universal” recognition systems: DeepMind GATO
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S. Reed et al. A generalist agent. TMLR 2022

Batched and masked
shifted targets

£(0,B)

Proprioception
Image

Text
Continuous actions

[ Discrete actions


https://openreview.net/pdf?id=1ikK0kHjvj

“Universal” recognition systems: UnifiedlO
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J. Lu et al. A unified model for vision, language, and multi-modal tasks. arXiv 2022
https://unified-io.allenai.org/
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“Universal” recognition systems: UnifiedlO
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Outline

 Brief history of recognition

 Different “dimensions” of recognition
« What type of content?
« What type of output?
« What type of supervision?

* Trends
« Saturation of supervised learning
« Transformers
* Vision-language models
« “Universal” recognition systems
« Text-to-image generation



DALL-E: Text-to-image generation using transformers

« Train an encoder similar to VQ-VAE to compress images to 32x32 grids
of discrete tokens (each assuming 8192 values)

« Concatenate with text strings, learn a joint sequential transformer model
that can be used to generate image based on text prompt

(a) a tapir made of accordion. (b) an illustration of a baby (c) a neon sign that reads

a tapir with the texture of an hedgehog in a christmas “backprop”. a neon sign that

accordion. sweater walking a dog reads “backprop”. backprop
neon sign

A. Ramesh et al., Zero-Shot Text-to-Image Generation, ICML 2021
https://openai.com/blog/dall-e/
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DALL-E: Image encoding

« Train convolutional encoder and decoder to compress images to 32x32
grids of discrete tokens (each assuming 8192 values)

L2 GRANUE PALISSERIE)

Figure 1. Comparison of original images (top) and reconstructions
from the discrete VAE (bottom). The encoder downsamples the
spatial resolution by a factor of 8. While details (e.g., the texture of
the cat’s fur, the writing on the storefront, and the thin lines in the
illustration) are sometimes lost or distorted, the main features of the
image are still typically recognizable. We use a large vocabulary
size of 8192 to mitigate the loss of information.




DALL-E: Transformer architecture and training

« Concatenate up to 256 text tokens with 32x32=1024 image tokens,
learn a transformer model with 64 layers and 12B parameters

« Dataset: 250M image-text pairs from the Internet (similar scale to
JFT-300M, apparently different from data used to train CLIP)

 Transformer model details
* Decoder-only architecture
* 64 self-attention layers,

« 62 attention heads,
sparse attention patterns

* Mixed-precision training,

(a) Row attention mask. (b) Column attention mask.  (c) Column attention mask with (d) Convolutional attention mask.

dIStrlbUted Optlmlzatlon transposed image states.

Figure 11. Illustration of the three types of attention masks for a hypothetical version of our transformer with a maximum text length of
6 tokens and image length of 16 tokens (i.e., corresponding to a 4 x 4 grid). Mask (a) corresponds to row attention in which each image
token attends to the previous 5 image tokens in raster order. The extent is chosen to be 5, so that the last token being attended to is the one
in the same column of the previous row. To obtain better GPU utilization, we transpose the row and column dimensions of the image
states when applying column attention, so that we can use mask (c) instead of mask (b). Mask (d) corresponds to a causal convolutional
attention pattern with wraparound behavior (similar to the row attention) and a 3 X 3 kernel. Our model uses a mask corresponding to
an 11 x 11 kernel.



DALL-E: Generating images given text

* Re-rank samples using CLIP

a bathroom with

- truck stopped at A 8
P a crowd of people  a woman and a man a man riding a aiuc . a man sitting on a a car covered in

&;sg;:l;l: g:;’g:;s standing on top of standing next to a c:gi’nsél?'a(?\haa bike down a street w::r ;né%r:;fggt?on bench next to a various empty
a beach. bush bench. bathtub past a young man. barriers are up slug. toothpaste tubes.

best of 8 best of 64 best of 512

best of 1

Figure 6. Effect of increasing the number of images for the contrastive reranking procedure on MS-COCO captions.



DALL-E 2: Text-to-image generation using diffusion models

vibrant portrait painting of Salvador Dali with a robotic half face a shiba inu wearing a beret and black turtleneck a close up of a handpalm with leaves growing from it

an espresso machine that makes coffee from human souls, artstation

A. Ramesh et al. Hierarchical text-conditional image generation with CLIP latents. 2022
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DALL-E 2

Figure 19: Random samples from unCLIP for prompt “A close up of a handpalm with leaves growing from
it”



DALL-E 2

Figure 18: Random samples from unCLIP for prompt “Vibrant portrait painting of Salvador Dali with a
robotic half face”



DALL-E 2
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throwing
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Figure 2: A high-level overview of unCLIP. Above the dotted line, we depict the CLIP training process,
through which we learn a joint representation space for text and images. Below the dotted line, we depict our
text-to-image generation process: a CLIP text embedding is first fed to an autoregressive or diffusion prior
to produce an image embedding, and then this embedding is used to condition a diffusion decoder which
produces a final image. Note that the CLIP model is frozen during training of the prior and decoder.



DALL-E 2

Figure 3: Variations of an input image by encoding with CLIP and then decoding with a diffusion model. The
variations preserve both semantic information like presence of a clock in the painting and the overlapping
strokes in the logo, as well as stylistic elements like the surrealism in the painting and the color gradients in
the logo, while varying the non-essential details.



Diffusion models
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Figure 2: The directed graphical model considered in this work.
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J. Ho et al. Denoising diffusion probabilistic models. NeurlPS 2020
Blog introduction: https://lilianweng.qgithub.io/posts/2021-07-11-diffusion-models/
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DALL-E 2 limitations

Figure 15: Reconstructions from the decoder for difficult binding problems. We find that the reconstructions
mix up objects and attributes. In the first two examples, the model mixes up the color of two objects. In the
rightmost example, the model does not reliably reconstruct the relative size of two objects.



DreamFusion: Diffusion models + NeRFs
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B. Poole, A. Jain, J. Barron, B. Mildenhall. DreamFusion: Text-to-3D using 2D Diffusion. arXiv 2022
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DreamFusion: Diffusion models + NeRFs
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B. Poole, A. Jain, J. Barron, B. Mildenhall. DreamFusion: Text-to-3D using 2D Diffusion. arXiv 2022
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From vision to action



From vision to action

Figure 1: Our robot can traverse a variety of challenging terrain in indoor and outdoor environments, urban and
natural settings during day and night using a single front-facing depth camera. The robot can traverse curbs,
stairs and moderately rocky terrain. Despite being much smaller than other commonly used legged robots, it is
able to climb stairs and curbs of a similar height. Videos at https://vision-locomotion.github.io

A. Agarwal, A. Kumar, J. Malik, and D. Pathak. Legged Locomotion in Challenging Terrains
using Egocentric Vision. CoRL 2022
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From vision to action
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Figure 3: We train our locomotion pollcy in two phases to avoid rendering depth for too many samples. In
phase 1, we use RL to train a policy 7' that has access to scandots that are cheap to compute. In phase 2, we
use 7! to provide ground truth actions which another policy 7 is trained to imitate. This student has access to
depth map from the front camera. We consider two architectures (1) a monolithic one which is a GRU trained to
output joint angles with raw observations as input (2) a decoupled architecture trained using RMA [3] that is
trained to estimate vision and proprioception latents that condition a base feedforward walking policy.



