Simple tracking

Marcel Duchamp, Nude
Descending a staircase




Follow an object from frame to frame

Eadweard Muybridge




Tracking — Why?

Motion capture
* build models of moving people from video

Recognition from motion
» eg cyclists move differently than runners

Surveillance
* who is doing what?

— for security (eg keep people out of sensitive areas in airports)
— for HCI (eg kinect, eyetoy, etc.)



Tracking - What

Establish state of object using time sequence
« state could be:
— position; position+velocity; position+velocity+acceleration
— or more complex, eg all joint angles for a person

« Biggest problem -- Data Association
— which image pixels are informative, which are not?

Key ideas
« Tracking by detection
— if we know what an object looks like, that selects the pixels to use

» Tracking through flow
— if we know how an object moves, that selects the pixels to use



Tracking by detection

Assume

» a very reliable detector (e.g. faces; back of heads)

» detections that are well spaced in images (or have distinctive properties)
— e.g. news anchors; heads in public

Link detects across time
* only one — easy
* More — weighted bipartite matching
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Point tracks reveal public behaviour
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Some detections might fail...

Match measurements to abstract “tracks”
Strategy

* detect in each frame

 link detects to tracks using matching algorithm

— measurements with no track? create new track
— tracks with no measurement? wait, then reap

» (perhaps) join tracks over time with global considerations

Link detects to tracks?
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Notation:

Write x(z) for the k’th response of the detector in the ith frame

Write ¢(k, ) for the k’th track in the ith frame

Write xt(k,7) for the detector response attached to the k’th track in the ith frame
(Think C pointer notation)

Assumptions: We have a detector which is reasonably reliable.
We know some distance d such that d(xt(k,7 — 1), *t(k,7)) is always small.

First frame: Create a track for each detector response.

N’th frame:

Link tracks and detector responses by solving a bipartite matching problem.
Spawn a new track for each detector response not allocated to a track.

Reap any track that has not received a detector response for some number of
frames.

Cleanup: We now have trajectories in space time. Link anywhere this is
justified (perhaps by a more sophisticated dynamical or appearance model, derived
from the candidates for linking).

Algorithm 11.1: Tracking by Detection.




Issues

What detection and how to detect?

* Interest points
« Detector boxes (but you need to know the category)

« Other kinds of detector report
Eg full kinematic body configuration

« Semantic search regions
 User delineated regions
« “Salient” regions

Using both detection and motion information

« Many moving objects move in quite predictable ways
« Use motion and detection together to predict state



Tracking by detection for interest points

Find interest points

Know window (say) in image (n)
Want to find corresponding window in (n+1)

Search over nearby windows
 to find one that minimizes SSD error (Sum of Squared Differences)

(n) (n+1)y2
Z(Ri; — Ry )
i,j

* where sum is over pixels in rectangle



Matching

Patch is at u, t; moves to u+h, t+1; h is small

Error is sum of squared differences
E(h)= " [(u.t)—I(u+ht+1)

UEP,

This is minimized when
VeE(h) =0.

substitute
Illu+ht+1)~I(ut)+ R'VI
get
Y (VHVHT k=Y [I(u,t)—I(ut+1)]VI
UEP, UEP,




Matching, Il

We can tell if the match is good by looking at

> uep (VI)(VI)T]

« which will be poorly conditioned if matching is poor
— eqg featureless region
— eg flow region



Matching, Il

Previous test compares i and i+1
But the patch should be “well behaved” over long time scales

Compare N'th frame with first by
Compute affine transform M, c that minimizes LSE

E(M.c) = Z I(w,1) — I(Mu+c, {:)]2 .

UEP,

Check value of LSE; too big? Reject track



Efros et al, 03



Interest points yield tracker and matcher

Combine:
Collect multiple frames of person A

Track person B in video
For each box, match to best person A frame
Blend that in



Efros et al, 03



Track by flow (simple form)

Assume

» appearance unknown (but domain, parametric flow model known)
» optic flow assumptions, as before

Initialize
 mark out domain

Track

» choose flow model parameters that align domain in pic n with n+1 best
* push domain through flow model to get new domain




Issues

What detection and how to detect?
+_Interestpoints

« Detector boxes (but you need to know the category)
Other kinds of detector report

«  Eg full kinematic body configuration

Semantic search regions Issues: how do you

User delineated regions describe a region?
PSR T : Region deforms
Salient” regions

Using both detection and motion information

« Many moving objects move in quite predictable ways
« Use motion and detection together to predict state

These work like
Interest points




Using a motion model

Many objects move quite predictably

Movement is slow wrt frame rate, OR
Acceleration is small, OR
Acceleration is fixed (eg movement under gravity)

So we know a lot about where the object is in the next frame
this should help our estimate
Imagine detector is noisy, and movement is predictable



A 1-D problem

Drop a measuring device on a cable down a hole
* where is it?

Setup:

« measurement of depth L

« actual distance down the hole 9

+ known P(6@)  which will be normal, N(b.;o
« known p(x|0) which will be normal, N(C@, 0-2

Q: whatis p(@|x) °?



A 1D problem, |l

p(lE 0)p(0) (Bayes rule), so that:
Olx) = YT
p(f|x) (@)
p(8|z) o< p(z|0)p(6)
And:
log p(0|z) = log p(z[0) + log p(0) + K
_ (cf —x)* (6—06,)> K
202 202 |



A 1D problem, Il

logp(0|x) — T 20_2 o 20_2 _|_ K,
_ B 02 afn + czag 9 900,,%,& + cxag o
2 02 02 02 02

Notice that this is a normal distribution! (check that the log is quadratic in theta)



A 1D problem, IV

Now we can recover parameters for  p(60|x)

Write N(,Ut§ o'?)

PRY.
log p(0|x) = _( 20’L2Lt) - K"
i
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Pattern matching

Compare
log p(6)) = _(092;;)2 (8 ;0926)2 K
_ _922 [(;727,&0—2;;;02] iy [90072;72:—02:1:02] K"
and
log p(B|z) = _ @ ;aiz”t)2 iy
= T gt g



A 1D problem, V

2
&

0.0% + cxo

[t 2 2 9
Of + C°0¢

* Important checks
What happens when the measurement is unreliable?
What happens when the prior is very diffuse?




Summary, with change of notation

Useful Fact: 9.2 The parameters of a normal posterior with a single
measurement

Assume we wish to estimate a parameter 6. The prior distribution for
f is normal, with known mean p, and known standard deviation o.
We receive a single data item 2, and a scale ¢;. The likelihood of 2,
is normal with mean ¢,0 and standard deviation 0, 1, where o, 1 is
known. Then the posterior, p(@|z1,c1,0m,1, ftx,0x), is normal, with

mean - -
C1T105% + /‘Lﬂ'am,l

2 2 2
Um,l + C10%

2 2

S O'm’IO'ﬂ.
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and standard deviation




Now a second measurement arrives...

We know that p(6|z) is normal
« think of this as the prior

We know that p(x1|@) is normal
» think of this as the likelihood

So:
 the posterior p(9|x1’gj) must be normal

« and we can update as before!
Key points:
Can represent posteriors easily, cause they're normal

Updates are easy

True in higher
dimensions,
too, and very
Important. We'll
cover in some
detail.



The 1D Example is too simple...

Notice we had multiple measurements, but the object didn’t
move

Typical object:

Start state then iterate
Move
Generate measurement

Typical tracking/filtering:

Start with prior
Predict new state resulting from movement
Update prediction using new measurement



Filtering

The moving object has a state
* Position
« Position and velocity

« Position, velocity, acceleration
 Etc.

Every tick of time (eg at each frame)

« State is updated by a known (but possibly noisy) procedure
 Equivalently, the object moves
« There is a measurement of state, possibly noisy

Filtering

« Update some representation of state, using measurement and motion information

The big engine: the Kalman Filter



Filtering In the world

Object in state X {i-1},

Represent P(X_{-1}Y_0, ... Y_{-1}) seen measurements Y_0, ... Y_{i-1}

State updates

v

Represent P(X_i[Y_O, ... Y_{i-1}) Object in state X_i,

seen measurements Y 0, ... Y {i-1}

Generate measurement

Object in state X |,

Represent P(X_I[Y_O, ... Y_i) seen measurements Y O, ... Y_i



Assumption: Linear dynamics and measurement

Square ma;[rix of full rank

® State changes as: x; = Dix;_1 + £

|

This is a normal random variable with zero mean and known covariance

Any matrix whose dimensions are OK
'
yi = M;ix; +¢
® Measurements are: [

This is a (different!) normal random variable with zero mean and known covariance



Examples

® Dynamical models
® Drifting points
® new state = old state + gaussian noise
® Points moving with constant velocity
® new position=old position + (dt) old velocity + gaussian noise
® new velocity= old velocity+gaussian noise

® Points moving with constant acceleration
® etc

® Measurement models

® state=position; measurement=position+gaussian noise
® state=position and velocity; measurement=position+gaussian noise
® but we could infer velocity

® state=position and velocity and acceleration;
measurement=position+gaussian noise



Other notation

Read this as: x_i is normally
distributed. The mean is a linear
function of x_i-1 and

whose variance is known (and can
depend on i).

x; ~ N(Djx;—1;24d;)

yi~ N(M;x;; Xm)

\dRead this as: y_i is normally
istributed. The mean is a linear

function of x_i and
whose variance is known (and can
depend on i)



Important facts

P(yilx;) is normal, by construction

Assume that P(x;_1lyo,...,y:—1) IS normal

Then P(x;lyo,...,yi—1) and P(x;lyo,...,y:) are normal

But this means that if P(X_0) is normal, all distributions are
normal (induction!)

Important, because normal distributions are easy to represent



Checking...

® Probability distribution is normal iff it has the form:

1

logp(x) = =7 [(x =) "7 (x — p)] + K

® and you can check this for each of the relevant dists.



"'he steps

v

Represent P(X_{i-1}|Y_1, ... Y_{i-1})

v

Represent P(X_i|Y_1, ... Y _{i-1})

v

Represent P(X_i|Y_1, ... Y_ i)

Have:
Mean and covariance of posterior
after i-1’th measurement




The Kalman Filter

® Dynamic Model

® Notation

x; ~ N(Dix;—1,%4,)
yi ~ N(M;x;, Xp,)

mean of P(X;|yo, - .
mean of P(X;|yo, - .

covar of P(X;|yo, ..
covar of P(X;|yo, - .

. Yi-1) as X
L, yi) as X
., Yi—1) as X
L, Yi) as X



Prediction

® We have:
X;_1 "~ N(Xj__l, 22_—1) Xg ™ N(Dixi—17 Zdz)
X; = Dixi—1+ ¢
This is a normal random variable with zero mean and known covariance

mean(x;) = D;mean(x;_1)

cov(xi) = DiCOV(Xi—l)Dg;F + COV(C)



Prediction

® We have:

X1 N(X+ 22_—1) Xg ™ N(Dixi—la Zdz)

72—1"
xX; = Dix;—1+ ¢

This is a normal random variable with zero mean and known covariance

Which yields....

X, =D:X, . YT =%y, + D% D

(/



Summary, with change of notation

Useful Fact: 9.2 The parameters of a normal posterior with a single
measurement

Assume we wish to estimate a parameter #. The prior distribution for
# is normal, with known mean p, and known standard deviation o.
We receive a single data item x; and a scale ¢;. The likelihood of z,
is normal with mean ¢;0 and standard deviation o, 1, where 0,1 is
known. Then the posterior, p(0|z1,¢1,0m,1, ftx,0x), is normal, with

mean
C12102 + fn O 1 posterior mean is weighted combo

1= .
: 021 +cioZ of prior mean and measurement

and standard deviation . . .
posterior covar is weighted combo

2 o2 of prior covar, measurernent
1=\3Z t&2  matrix and measurement covar




Useful Fact: 9.2 The parameters of a normal posterior with a single
measurement

Assume we wish to estimate a parameter . The prior distribution for
# is normal, with known mean p, and known standard deviation o.
We receive a single data item z; and a scale ¢;. The likelihood of 2
is normal with mean ¢;6 and standard deviation oy, 1, where om 1 is
known. Then the posterior, p(8|z1,c1,0m,1, fx,0x), is normal, with
mean

CLT107 + [ix O, |

0',2”,1 + cio2

2 2

oy 0105
===
Omat 202

1=

and standard deviation

Ki = 57 M [MZMT +80,]

X" =X; +Ki[yi — MiX7]

\g
S.+
|

[I — ICZMZ] Zi_

posterior mean is weighted combo
of prior mean and measurement

posterior covar is weighted combo

of prior covar, measurement
matrix and measurement covar

posterior mean is weighted combo
of prior mean and measurement

posterior covar is weighted combo

of prior covar, measurement
matrix and measurement covar



"'he steps

Have:

v

Mean and covariance of posterior
after i-1'th measurement

Represent P(X_{i-1}|Y_1, ... Y_{i-1})

v

Represent P(X_i|Y_1, ... Y _{i-1})

v

Represent P(X_i|Y_1, ... Y_i)




"'he steps

Have

Represent P(X_{i-1}|Y_1, ... Y _{i-1}) X i—1 Z;I- —1

R _

Represent P(X_i|Y_1, ... Y_i)




Simple example: tracking a ballistic object

Assumptions:
Orthographic image, camera oriented so vertical (y) is gravity
Object is falling freely under gravity
Detector measures object position + noise



The object

State:

position, velocity, acceleration X —

Pi = Pi—1+Vi-1Al + 11

Vi=vV—1 +a; 1At + (i1
a; = a;_1+&-1

P T At1 0 Pi—1
V; 0 I AtL Vi—1 | T €&
a; 0 0 A

A;—1

< T

QD



The object

Prior:
position and velocity could be pretty much anything
acceleration should be very close to gravity vector

Mean: 0 Covariance

wlZ 0 0
0 0O wZ 0
g 0 0 sZ

Where w is big and s is small



Measurements

At i'th frame, we see:
X and z components of position + noise

(pm\_ (1000 0
Yi=\ps J7L0 1 0 0 0

Choose noise model, and we are done!

So

oS O

o O

o O

o O



"'he steps

Have

Represent P(X_{i-1}|Y_1, ... Y _{i-1}) X i—1 Z;I- —1

R _

Represent P(X_i|Y_1, ... Y_ i)




Questions:

Can we estimate p 2 like this?
Why can we estimate velocity and acceleration?

Why go to all this trouble?



"'he steps

Have

Represent P(X_{i-1}|Y_1, ... Y _{i-1}) X i—1 Z;I- —1

R _

Represent P(X_i|Y_1, ... Y_i)




Example Il

® A simple translating car

® we supply a known demand to the accelerator,
® changing at each time step

® it sees 2 beacons (which are in its coordinate system)
® beacon 1 measured in car x but not y
® beacon 2 measured in car y but not x

o Q
® recover filtered estimates of:
® position, velocity and acceleration in world coords



Y

Y

In world coordinates, car is at:
In car coordinates, beacon 1 measurement is:

In car coordinates, beacon 2 measurement is:

(b1 —c¢)
(b2 —c)



Dynamical model

® We supply a demand to the accelerator
® acceleration updates as noise (measured to be about the same as demand!)

a;+1 = a; + noise

® velocity by integrating acceleration V;11 = V; + 0ta; + noise

® position by integrating velocity Cit1 =C; + 5tVz‘ + noise



Stack the vectors to get:

Which gives:

Xi+1 =

Ci+1
Vit+1

| i1

Where:

+ &



Measurement model

® The acceleration at i should be demand
® +noise

® Beacons are in car coordinate system)
® beacon 1 measured in car x but not y
® beacon 2 measured in car y but not x



b, ©
A
c >

\

In world coordinates, car is at: C

, . T
In car coordinates, beacon 1 measurement is: €] (b1 — C)
€1 g

In car coordinates, beacon 2 measurement is: eg (b2 — c)



Yy

The acceleration demand

y:

These are known constants Measurements from the beacons

0 0 Z
el 0 0
el 0 0

1

l

d;
e,{bl — bl
i eng — b2 i

I

+ noise =

-+ noise

o O O

.-
0
O -

X; + G

Cz' ~ N(O7 Em,z’)



"'he steps

Have

Represent P(X_{i-1}|Y_1, ... Y _{i-1}) X i—1 Z;I- —1

T _

Represent P(X_i|Y_1, ... Y_i)




Questions:

Why can we estimate position and velocity?

Why go to all this trouble?



MULTI-OBJECT TRACKING

Goal: detect

and track all

objects In a
scene

Multiple slides lifted from L. Leal-Taixe’s slides at ICVSS 2022



PROBLEM STATEMENT

« Given a video, find out which parts of the image depict the same object
in different frames

« Often we use detectors as starting points




TRACKING IS ALSO...

Learning to model our target:

Appearance: we need to know how the target looks like
- Single object tracking
—  Re-1dentification

Motion: to make predictions of where the targets goes
- Trajectory prediction




CHALLENGES

Multiple objects of the same type
Heavy occlusions

Appearance Is often very similar

’ , .;!] .‘ Al . j |
;;{‘.’_, J i
walwih




OFFLINE VS. ONLINE

Online tracking Sometimes “causal’
~ Processes frames as they become available

~ For real-time applications, e.g.,, autonomous dniving, AR/VR
~ Prone to dnfting = hard to recover from errors or occlusion

Offline tracking
Processes a batch of frames
Good to recover from occlusions (short ones as we will see)

Not suitable for real-time applications
Surtable for video analysis, automatic labeling, video editing.




OFFLINE VS. ONLINE

« Online tracking
- Tracking-by-regression, e.g., Tracktor, Centertrack.
~ Transformer-based trackers, e.g.,, Trackformer

« Offline tracking

— Tracking with graphical models
- Leaming to track with graph neural networks, e.g.,, MPN Track




SHIFTING PARADIGMS IN MOT

Tracking-by- Tracking-by- Tracking-by- What is
detection regression attention next?

Towards unifying
detection and tracking

Towards end-
to-end learning

-




MO TCHALLENGE

« MOTChallenge: www.motchallenge.net

o Multiple object tracking (from sparse to extremely crowded)

MOTI 6/ | 7 MOT20
SV = - w7 e | o » ,

’/

z:' ol B

." f !”‘

Dendorfer et al. MOTChallenge: A benchmark for single-camera multi-target tracking. ||CV, 2021.




| RACKING-BY-

 DETECTION







TBD (to date)

T

; O % © P Weighted bipartite O
| 0 i

¢ O matching o
k

S e

- / O n

More links\ . :

O/ N4 s
Questions:

can we use dynamics to simplify matching?
how do we represent similarity?




Recall Kalman Filter sto

Have:
Mean and covariance of posterior
after i-1'th measurement

This predicts where
Boxes might be in
Next frame




A SIMPLE ONLINE TRACKER

|. Track inrtialization (e.g. using a detector) “

2. Prediction of the next position (motion model)

————p

3. Matching predictions with detections (appearance model)




A SIMPLE ONLINE TRACKER

« 2. Prediction of the next position (motion model)
Classic: Kalman filter
Nowadays: Reonvent architecture  Builld this into detector
For now: we will assume a constant velocity model (spoller
alter: it works really well at high framerates and without

occlusions!)




Improvements

Adjust detector to predict next object location

Learn feature representations of boxes that get the tracks right



Image

FIGURE 18.8: Faster RCNN wuses two networks.
“objectness” scores for a sampling of possible image bozes.
“anchor bozxes”) are each centered at a grid point. At each grid point, there are nine
boxes (three scales, three aspect ratios). The second is a feature stack that computes
a representation of the image suitable for classification.
objectness score are then cut from the feature map, standardized with ROI pooling,
then passed to a classifier. Bounding box regression means that the relatively coarse

Neural net
feature
stack

—> Rrois [

Crop

ROI pool

Neural net
Classifier

;5

Box proposal
network

Box non-max
Suppression

Non-max
Suppression

Bounding box
regression

The boxes with highest

One uses the image to compute
The samples (called

sampling of locations, scales and aspect ratios does not weaken accuracy.




REGRESSION-BASED DETECTORS

Input iImage Convolutions

Classification

= head
Regression
head

Feature

Region representation
proposal

R Girshick. Faster RCNN. ICCV 2015




REGRESSION-BASED DETECTORS

Input iImage Convolutions
‘

Classification

‘ head
Regression
head

Feature

Region representation
proposal

R Girshick. Faster RCNN. ICCV 2015




REGRESSION-BASED DETECTORS

Input Image Convolutions
e

Classification

‘ head
Regression
head

Feature

Regressed representation
bounding

box

R Girshick. Faster RCNN. ICCV 2015




FROM DETECTOR TO [RACKTOR

« Thisis very similar to what we want to do in online tracking

« Tracktor: a method trained as a detector but with tracking capabilities

Bergmann et al. Tracking without bells and whistles. ICCV 2019.




FROM DETECTOR TO [RACKTOR

Use detections of frame
t as proposals

Frame t+ |

Bergmann et al. Tracking without bells and whistdes. ICCV 2019.




FROM DETECTOR TO [RACKTOR

Bounding box

Tng regression

m by i =
e . . * -
] o A Ty Lo~ _p—— | i
3 < Y e T 2
T AN ¢ -

Where did the detection with ID | go in the next frame? ~ Tracking!

Bergmann et al. Tracking without bells and whistles. ICCV 2019.




PROS AND CONS

We can reuse an extremely well-trained regressor
- We get well-positioned bounding boxes

We can train our model on still images = easier annotation!

Tracktor is online




PROS AND CONS

There 1s no notion of “identity” in the model
~  Confusion in crowded spaces

As any online tracker, the track is killed If the

target becomes occluded
~ Need to close small gaps and occlusions

The regressor only shifts the box by a small
quantrty
- lLarge camera motions
— lLarge displacements due to low framerate

\ Re-ID
Pl

\ Motion
/ lelels




Improvements

Adjust detector to predict next object location

Learn feature representations of boxes that get the tracks right



TOWARDS UNIFYING DETECTION AND TRACKING

« Option |: Joint detection and association embedding prediction (JDE)

£ ﬂ —a L
... . Uncertainty s, [
Box classification vy J

—_—

Uncertaint
Box Regression Y

—’Ly

Wang et al. Towards real-time multi-object tracking. ECCV 2020.
Xu et al. How to train your deep multi-object tracker. CVPR 2020




Simplest version

Train so that
embeddings for correct matches are similar
embeddings for wrong matches are different

More complicated
set up long term matching process (Graph neural network)



GRAPH-BASED ASSOCIATION most, feer on offine.

tracking.

Input frames and

object detections |8’ "__ AT ‘l =' S| 'l 1< Iﬁ
L:.l_ u.!-az ﬂ SR ISNT I .num

Time

»
>




(GRAPH-BASED ASSOCIATION

« Pairwise edge costs can erther be learned or handcrafted (same as for
the Hungarian)
« Find trajectonies with a solver, e.g., Simplex

Input frames and

object detections |83 | gl , =! 5. 'l . !lﬁ
t’_‘in :an‘ A o l‘ LI \.l‘ ”‘_l‘!l

Time

»
>

Zhang et al. Global Data Association for Multi-Object Tracking Using Network Flows. CVPR 2008




(GRAPH-BASED ASSOCIATION

Input frames and

object detections !l:""-'?'_-i'.
|’ '-fdink




(GRAPH-BASED ASSOCIATION

Feature extraction i1s done independently from the optimization
problem

Optimization can be expensive (depends on the graph connectivity)

Input frames and

object detections 18'3E
Liﬂ__




(GNN-BASED ASSOCIATION

« Solution: more machine learning

Input frames and

object detections 18"3E
L:li_




(GNN-BASED ASSOCIATION
« Node embeddings are obtained from a CNN

Input frames and mﬂ m m m M m

object detections |8E | Rl ¢ BRI wmliD T R
ol pediat R R 1_;2.’1 iy

Time

>
>

Leal-Taixé et al. Leaming by tracking: Siamese CNN for robust target association. CVPRW 2016




(GNN-BASED ASSOCIATION

« Node embeddings are obtained from a CNN
« Edge embeddings are obtained from an MLP operating on appearance

and position features A
pairwise features
mmm — encoding
Relative box position
Relative box size

Appearance similarity
Time distance.

Input frames and mﬂ M m m M M
T [ BT | =i | Wi AaKT
colic Bl BLR ShuE vl ol _

»
>

object detections |8’

G. Brasé and L Leal-Taixé. Learning a neural solver for multiple object tracking. CVPR 2020




(GNN-BASED ASSOCIATION

« A graph neural network (GNN) can be used to propagate node and
edge embeddings over the graph

Input frames and

object detections |83 Hﬂ : Ef | 15 k... ulﬁ
L_ili_ | SRV ) L;u’i NIAAT

Time

»
r g

G. Brasé and L. Leal-Taixé. Learning a neural solver for multiple object tracking. CVPR 2020




(GNN-BASED ASSOCIATION

For a fixed number of
rterations, node and
edge embeddings are
updated

Input frames and

object detections ] 1t 4 RN !l : 1T [ i
g’-!ain\ |u11'A3 ’4.\‘ !! ’l' §is s viLa'laly

Time

»
>

G. Brasé and L. Leal-Taixé. Leaming a neural solver for multiple object tracking. CVPR 2020




(GNN-BASED ASSOCIATION

Edges are updated with
embeddings from their
Incident nodes

Input frames and = : S
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G. Brasé and L. Leal-Taixé. Learning a neural solver for multiple object tracking. CVPR 2020




(GNN-BASED ASSOCIATION

Nodes are updated with
embeddings from their
neighboring edges
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(GNN-BASED ASSOCIATION

After neural message passing, edge
embeddings are classified into correct and
Incorrect track hypotheses
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(GNN-BASED ASSOCIATION
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ADVANTAGES OF GNNS

Backpropagation

Feature Extraction

| earnable Data Association
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G. Brasé and L Leal-Taxé. Leaming a neural solver for multiple object tracking. CVPR 2020




ADVANTAGES OF GNNS

«  We can directly work in the MOT domain (graph)
« Leam features specifically for the task and the graph structure

« Avoid the need of expensive optimization at test time
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G. Brasé and L. Leal-Taixé. Leaming a neural solver for multiple object tracking. CVPR 2020




Major problems remain

Long term occlusions present problems
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ANALYZING THE RESULTS
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ANALYZING THE RESULTS
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ANALYZING THE RESULTS
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ANALYZING THE RESULTS

Hard problems in tracking are left unsolved
- coverage of large gaps In detections
- recovering from partial occlusions
- tracking of small targets

All other methods are just marginally improving “easy’” scenes

In fact, accuracy in tracking has only increased by 2.4 percentage points
between 2017 and 2019 for MOT |6 in MO TChallenge




| RACKING-BY-

ATTENTION®

*Attention jointly solves the detection and tracking task.




Quick and (very) dirty guide to transformers - |

Mapping a sequence to a sequence is an important problem
eg machine translation
seq. of Latin words -> seq. of English words

but words affect other words, and are mangled as to order



Gallia est omnis divisa in partes tres; quarum unam incolunt Belgae,

<

All Gaul is divided into three parts; o

ich the Belgians inhabit one, the Aquitanians

aliam Aquitani, tertiam qui ipsorum lingua Celtae, nostra Galli,

(inhabit) another (part), (those) who are called Celts imrs Gauls,
‘ 

appellantur. Hi omnes lingua, institutis, legibus inter se differunt.

(inhabit) the third (part). All these differ amongst themselves in language, customs, (and) laws.



Quick and (very) dirty guide to transformers - ||

|dea:
build architecture ensuring rep’n of pred word
is affected by long range of inputs
*attention®
word rep’'n is weighted average of other word rep’'ns
weights depend on “similarity” score

Outcome:
revolutionary improvements in machine translation accuracies



But images aren’t sequences...
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DETECTION WITH [ RANSFORMERS

r

E; prediction heads
,/‘\ e d:::,

decoder

* Object detection a set prediction problem [, 2]
* Transformer decoder
* Object query self-attention ({class, box} or no-object)

* Encoded image feature and object query cross attention

[I] Canon et al. End-to-End Object Detection with Transformers. ECCV, 2020.
[2] Zhu et al. Deformable DETR: Deformable transformers for end-to-end object detection. ICLR 202 1.




| RACKFORMER

« MOT as a frame-to-frame set prediction problem

Transformer Transformer
Encoder Decoder

Meinhardt et al. Trackformer: multi-object tracking with transformers. CVPR 2022




TRANSFORMER QUERY DECODING

Transformer
Encoder

[0 W B X XX

Transformer
Decoder

YOREOOOO)

|. Self-attention between quenies
a. Inrtialize new track (object query)

b. Terminate occluded track

2. Encoder-decoder attention
a. Find new object in frame

b. Adjust to changed position of
tracks




CAN | RECOVER FROM OCCLUSIONS?

é Just keep track queries active for a time
window.

‘ No need to an extra re-ID head.

Transformer

’ The spatial information embedded into ncoder

each track query prevents their application [OEE 0000
for long-term occlusions.




TRAINING

|. Object detection on frame £ — 1 with
Y object Object queries

2. Tracking of objects from (1.) and detection of
new objects on frame T with all

N = Nobject =+ Ntrack queries

3. Assign [N predictions to ground truth objects in T

4. Compute set-prediction loss:
a. Classification (pedestrian or no-object)

b. Bounding box




| RACKFORMER

Elegant formulation of tracking which naturally merges detection and
data association

Good performance with partial occlusions
Good performance where detectors are weak

State-of-the-art results (with some data and some tricks)

Similar concurrent papers: MeMOT (ECCV22) and MO TR (CVPR22)




RESEARCH INTO LONG OCCLUSIONS
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RESEARCH INTO LONG OCCLUSIONS

« If we have long gaps In a trajectory without detection, there are 2
things we can do:

o Re-identification [!]

o Trajectory prediction — inherently in 3D

[1] Seidenschwarz et al. Simple cues lead to a strong multi-object tracker. anav 2022.




WHAT'S NEXT FOR

MO T7?




OBTAINING DATA

« Synthetic data: a study on how synthetic data can help us train
detectors, trackers, and re-identification methodes.

Fabbn et al. MOTSynth: How Can Synthetic Data Help Pedestrian Detection and Tracking?. ICCV 2021.




INCREASING ACCURACY

« STEP: Segmenting and Tracking Every Pixel

Weber et al. STEP: Segmenting and Tracking Every Pixel NeurlPS Track Datasets and Benchmarks 2021.




OPEN WORLD

« Bringing video understanding to the open world — for classes for which
we do not have pre-trained detectors
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Liu et al. Opening up open-world tracking. CVPR 2022




