Image filtering

* Roughly speaking, replace image value at x with some
function of values in its spatial neighborhood N (x):

gx) = T(f(N(x)))

o [y
—»T—»

« Examples: smoothing, sharpening, edge detection, etc.




Image filtering




Recall: Image transformations

* What are different kinds of image transformations?
 Range transformations or point processing
 Image warping
* Image filtering



Image filtering: Outline

Linear filtering and its properties
Gaussian filters and their properties
Nonlinear filtering: Median filtering

Fun filtering application: Hybrid images



Sliding window operations

» Let's slide a fixed-size window
over the image and perform the
same simple computation at each
window location

 Example use case: how do we
reduce image noise?

» Let's take the average of pixel
values in each window

* More generally, we can take a
weighted sum where the weights are
given by a filter kernel
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FIGURE 3.1: To compute the value of N' at some location, you shift a copy of M
(the flipped version of W) to lie over that location in I; you multiply together the
non-zero elements of M and I that lie on top of one another; and you sum the
results.



Applying a linear filter

Input

I 1Y L3 L4 Iis L6
I, I I3 [24 Is I
I3, I3, I33 [34 I35 I36
I41 L4, L43 L44 Iss |m
Is1 Is; Is3 Is4 Iss Is6

Adapted from D. Fouhey and J. Johnson

Filter

Output
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Applying a linear filter

Input

Filter Output

I35

O11 = Iyp-

Adapted from D. Fouhey and J. Johnson

fiut L fio+ Lis- fiz+ o+ I35 f33
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Applying a linear filter

Input

Filter Output

I35

O1, = Iy

Adapted from D. Fouhey and J. Johnson

fiu+ Lis - fiot Ly fiz+ oo+ T34 f33
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Applying a linear filter

Input

Filter Output

O13 = Iy3-

Adapted from D. Fouhey and J. Johnson

fiu+t Ly fio+ Iis- fiz+ o + I35 f33
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Applying a linear filter

Input Filter Output

I3 I3 I33 X —
I I4; 43
Is51 Is; Is3 Isq Iss Is6

O = iy f1n+ LIis fiot Lig f1z+ o + I3 f33

Adapted from D. Fouhey and J. Johnson
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Applying a linear filter

Input

Filter Output

011 01, 013

I35

Oy1 = Iy

Adapted from D. Fouhey and J. Johnson

fi1 + I fiot g fiz+ oo+ Lug f33
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Applying a linear filter

Input

Filter Output

I11 I1s L
I L5 1073 011 012 013 O14
I31 I35 I36 sk — 021 ()
llaq Iss Ls6
Is1 Iss Is6
Oy = Iy f11 + s fra+ lpa- friz+ o+ Lage a3

Adapted from D. Fouhey and J. Johnson
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Applying a linear filter

Input Filter Output

O3 = Iz f11 + Ipa-f1o+ Ips - f13+ oo + Lus- f33

Adapted from D. Fouhey and J. Johnson

111 I, I16
I I3, I (2%} 012 013 014
I31 I3; I36 k — 021 03, 023
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Applying a linear filter

Input

I 1Y L3 L4 Iis L6
I I I3 [24 Is I
I3 I3, I33 [34 I35 I36
[41 L4, L43 L44 Iss |m
Is1 Is; Is3 Is4 Iss Is6

Adapted from D. Fouhey and J. Johnson

Filter Output

What filter values should we use to
find the average in a 3x3 window?
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Convolution

For the moment, think of an image as a two dimensional array of intensities. Write
Z;; for the pixel at position 7, j. We will construct a small array (a mask or kernel)
W, and compute a new image N from the image and the mask, using the rule

Mj — Z Ii—u,j—kuv

which we will write

N=W=xT.

In some sources, you might see W *Z (to emphasize the fact that the image is 2D).
We sum over all © and v that apply to W; for the moment, do not worry about
what happens when an index goes out of the range of Z. This operation 1s known
as convolution, and VW 1s often called the kernel of the convolution. You should



Filtering

look closely at the expression; the “direction” ot the dummy variable uw (resp. v)
has been reversed compared with what you might expect (unless you have a signal

processing background). What you might expect — sometimes called correlation or
filtering — would compute

Mj — Z Ii+u,j+kuv
uv

which we will write

N = filter(Z,W).

This difference 1sn’t particularly significant, but if you forget that it is there, you
compute the wrong answer.



Note: Filtering vs. “convolution”

* In classical signal processing terminology, convolution is
filtering with a flipped kernel, and filtering with an upright
kernel is known as cross-correlation

* Check convention of filtering function you plan to use!

Filtering or “cross-correlation” “Convolution”
(Kernel in original orientation) (Kernel flipped in x and y)

Adapted from D. Fouhey and J. Johnson
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Padding >
strip

M XN
1mage

M-2u X N-2v
valid region

2ut+l X 2v+1
kernel

FIGURE 4.1: The mid-gray box represents an M x N image, and the darker gray box
a2u+ 1 x 2v+ 1 kernel. The valid region s lighter gray. It can be constructed
by placing the kernel at the top left and bottom right corners of the image, then
constructing the box that joins their centers (left). A wversion of this construction
reveals how the image should be padded to produce an M x N result. Place the
center of the kernel at the bottom left and top right of the image, and construct the
box that joins their outer corners (right ).



Practical details: Dealing with edges

« To control the size of the output, we need to use padding
* What values should we pad the image with?

» Zero pad (or clip filter)

 Wrap around ’
« Copy edge ’

» Reflect across edge

Source: S. Marschner



important property of convolution is that the result depends on the local pattern
around a pixel, but not where the pixel is. Define the operation shift(Z,m,n)
which shifts an image so that the i, j’th pixel is moved to the i —m, j —n’th pixel,
SO

Shift(I, m, n)ij = Iz'—m,j—n-
Ignore the question of the range, as shift just relabels pixel locations. Check that:
e Convolution is linear in the image, so
W (kL) = k(W=x*1I)
W (IT+T) = WHIT+W=xJ.
e Convolution is linear in the mask, so
(EW)*I) = kW=*1I)
W+V)*xZ) = W*IT+V*T
e Convolution is associative, so

W (VsTI) = (W) +T.

e Convolution is shift-invariant, so

W * (shift(Z,m,n)) = shift(W xZ, m,n).




Properties: Linearity

I«(fi1+f)=1xf +1xf,

B O
o- - B- @280

Adapted from D. Fouhey and J. Johnson

E (5 + )
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Properties: Shift-invariance

(shift(I) = ) = shift( (I(x ))

I *f)

(shift(l) * f)

Adapted from D. Fouhey
and J. Johnson
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More linear filtering properties

« Commutativity: f g = g *f
* For infinite signals, no difference between filter and signal
« Associativity: f * (g * h) = (f *g) *h

« Convolving several filters one after another is equivalent to
convolving with one combined filter:

(g *fO*f)xfs) =g * (f1 *f2 *f3)
* Identity: for unit impulse e, f « e = f



Practice with linear filters

Original

Source: D. Lowe



Practice with linear filters

0010
0110
0010
Original One surrounded Filtered
by zeros is the (no change)

identity filter

Source: D. Lowe



Practice with linear filters

Original

Source: D. Lowe



Practice with linear filters

Original Shifted left
By one pixel

Source: D. Lowe



Practice with linear filters

R 2
9
11111

Original

Source: D. Lowe



Practice with linear filters

O+

Original Blur (with a
box filter)

Source: D. Lowe



Practice with linear filters

0l0]0 ERE
020-5111 ?
0l0]0 TEE

Original

Source: D. Lowe



Practice with linear filters

Original

o oo
N

0
0
0

Sharpening filter:
Accentuates differences
with local average

(Note that filter sums to 1)

1
9

Sharpened

Source: D. Lowe



Sharpening

before

Source: D. Lowe



ing

Sharpen

Source:

S. Gupta



Filters are dot products
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FIGURE 3.1: To compute the value of N' at some location, you shift a copy of M
(the flipped version of W) to lie over that location in I; you multiply together the
non-zero elements of M and I that lie on top of one another; and you sum the
results.



RelLUs

Write W for a kernel representing some pattern you wish to find. Assume that W
has zero mean, so that the filter gives zero response to a constant image. Notice
that N' = WxT is strongly positive at locations where Z looks like W, and strongly
negative when Z looks like a contrast reversed (so dark goes to light and light goes
to dark) version of W. Usually, you would want to distinguish between (say) a light
dot on a dark background and a dark dot on a light background. Write

relu(z) =

x forax >0
0 otherwise

(often called a Rectified Linear Unit or more usually ReLU). Then relulV «T is a
measure of how well W matches Z at each pixel, and relu—)WW xZ is a measure of
how well W matches a contrast reversed Z at each pixel. The ReLU will appear
again.



lters detect patterns

Fi
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The dot-product analogy reveals some reasons that convolution is not a particularly
- good pattern detector. Assume that the mean of the kernel is not zero. In this
case, adding a constant offset to the image will change the value of the convolution,
so you cannot rely on the value. This can be dealt with by subtracting the mean
from the kernel.

If the mean of the kernel is zero, scaling the image will scale the value of
the convolution. One strategy to build a somewhat better pattern detector is to
normalize the result of the convolution to obtain a value that is unaffected by scaling
the image. For VW a zero mean kernel, G a gaussian kernel, and € a small positive
number compute

WxT
GxT+¢€

Here the division is element by element, € is used to avoid dividing by zero, and
G * T is an estimate of how bright the image is. This strategy, known as normal-
1zed convolution produces an improvement in the detector. Figure 4.3 compares
normalized convolution to convolution. The right two frames show the positive



Positive Negative Positive Negative
. Normalized
Convolution Convolution




Applications: Gradient estimates

For an image Z, the gradient is

BI oL

which we could estimate by observing that

oz . I(x + o, y) I(x,y)

This means a convolution with

will estimate OZ/0x (nothing in the definition requires convolution with a square
kernel). Notice that this kernel “looks like” a dark pixel next to a light pixel,
and will respond most strongly to that pattern. By the same argument, 07 /0y =
Zi iv1 — Lii. These kinds of derivative estimates are known as finite differences.



Image derivatives with finite differences




Finite differences are overexcited by noise

0.01

0.1




Denoising with filters




A crucial property of images

Pixels are like their neighbors
mostly, for most pixels

Imagine you wish to denoise an image. You could do so by
averaging neighbors (a filter!).



Smoothing with box filter revisited

Source: D. Forsyth



A crucial property of images

Pixels are like their neighbors
mostly, for most pixels
the closer the neighbor the more alike

Imagine you wish to denoise an image. You could do so by
averaging neighbors (a filter!). Weighting the neighbors so
nearby neighbors get heavier weights is a good move.



Smoothing with box filter revisited

* What's wrong with this picture?

 What's the solution?

* To eliminate edge effects, weight contribution of neighborhood pixels
according to their closeness to the center

“proportional to”

(renormalize values to sum to 1) Gaussian filter
6(x,) ST
X,V) Xexp| —

!

standard deviation

Adapted from D. Fouhey and J. Johnson (determlnes SiZe Of blOb )



https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf
https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf
https://web.eecs.umich.edu/~justincj/slides/eecs442/WI2021/442_WI2021_filtering.pdf

Gaussian filters

oc=1 o= 2 o =4 o =28

Filter size: 21 x 21

Adapted from D. Fouhey and J. Johnson
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Choosing filter size

* Rule of thumb: set filter width to about 60 (captures 99.7% of
the energy)

o =8 o = 8
Width = 21 Width = 43

Too small! A bit small (might be OK)

Adapted from D. Fouhey and J. Johnson
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Gaussian vs. box filtering




Gaussian noise

The simplest model of image noise is the additive stationary Gaussian noise (or
Gaussian noise) model, where each pixel has added to it a value chosen indepen-
dently from the same normal (Gaussian — same Gauss, different sense) probability
distribution. This distribution almost always has zero mean. The standard devi-

ation 1s a parameter of the model. Figure 4.6 shows some examples of additive
stationary Gaussian noise.



Gaussian smoothing of Gaussian noise

Kernel sigma ->
Onginal _ 1 ‘ 2

(S

4
o P




Smoothing by how much?

The choice of o (or scale) for the Gaussian follows from the following consid-
erations:

e If the standard deviation of the Gaussian is very small-—say, smaller than one
pixel—the smoothing will have little effect because the weights for all pixels
off the center will be very small.

e For a larger standard deviation, the neighboring pixels will have larger weights
in the weighted average, which in turn means that the average will be strongly
biased toward a consensus of the neighbors. This will be a good estimate of a
pixel’s value, and the noise will largely disappear at the cost of some blurring.

e Finally, a kernel that has a large standard deviation will cause much of the
image detaill to disappear, along with the noise.



ing

Sharpen

Source:

S. Gupta



“Detail” filter follows from linearity

[—I+xg=1x(e—g)

I |

unit impulse
(identity)

ANy
5/”5"’%’:‘:’:’:‘\“\‘:“\\\%‘
NI
A 00‘0" St
ISR

unit impulse

Gaussian




Poisson noise

For each pixel location, flip a biased coin
If it comes up heads, move on
iIf it comes up tails, flip a fair coin
iIf that is heads, pixel -> full bright
tails, pixel -> full dark

Models device damage, manufacturing failures, some kinds of
transmission error, efc.



Smoothing Poisson noise with a gaussian filter

Kernel sigma ->
Original

o | 2 | 3 4
< . ,- 0 0 E
' ®: 0.001



The median filter

N_{ij} = median(Neighborhood(O {ij}))

THIS ISN'T LINEAR!
(check you're sure of this)



Smoothing Poisson noise with a median filter

Window size ->
Original

r
,&o



Median filters vs Gaussian noise

o Window size ->
Original

R‘.{w

Nno noise

P | »".\:4.," 5 Se m o N \‘-. ”‘
- \ ) }‘ .- \ ) ‘ - - ‘ ) .{ \O
- [ ¥ i



Gaussian smoothing of Gaussian noise

Kemnel sigma ->
Original 1 2 | 3




Multi-channel convolution

The description of convolution anticipates monochrome images, and Figure 4.3
shows filters applied to a monochrome image. Color images are naturally 3D ob-
jects with two spatial dimensions (up-down, left-right) and a third dimension that
chooses a slice or channel (R, G or B for a color image). Color images are sometimes
called multi-channel images. Multi-channel images offer a natural for representa-
tions of image patterns, too — two dimensions that tell you where the pattern is
and one that tells you what it is. For example, the results in Figure 4.3 can be
interpreted as a block consisting of eight channels (four patterns, original contrast
and contrast reversed). Each slice is the response of a pattern detector for a fized
pattern, where there is one response for each spatial location in the block, and so
are often called feature maps (it is entirely fair, but not usual, to think of an RGB
image as a rather uninteresting feature map).



Multi-channel Convolution

For a color image Z, write Z, ;; for the £’th color channel at the 4, j'th location,
and K for a color kernel — one that has three channels. Then interpret N' =7 x K
as

Afij — E Ik,i—u,j—vlckuv

kuv

which is an image with a single channel. This A is a single channel image that
encodes the response to a single pattern detector. Much more interesting is an
encoding of responses to multiple pattern detectors, and for that you must use
multiple kernels (often known as a filter bank). Write IV for the I’th kernel, and
obtain a feature map

Niij = Z Ik,i—u,j—v}c](gliv-

kuv



Multi-channel convolution

Kernel block 2

Feature
map 2

Kernel block 1

FIGURE 4.4: On the left, two kernels (now 3D, as in the text) applied to a set of
feature maps produce one new feature map per kernel, using the procedure of the
text (the bias term isn’t shown). Abstract this as a process that takes an x X y X d

block to an X XY x D block (as on the right ).



Representing Images with Filter Banks

Filter Positive response




Representing Images with Filter Banks at scales

Positive Positive
Filter  response Filter response

E



Images with Filter Banks at scales

Representing




But which filters should | use?

Up till about 2012:

- choose some, mostly spots and bars

After 2012:

- lots; choose ones that work well in your application
using an optimization procedure



