
Last block:
Build an encoder and a decoder to:

 Accept noisy image, produce clean version

By:

 Constructing loss
 Applying SGD to get minimal loss on training data

Housekeeping
There is a great deal of housekeeping:

 If you build your own from scratch, you will suffer (but learn)
 and it won’t work all that well (missing tricks)

 Use an API (list in notes)

 Build from someone else’s code (Github, Huggingface)

Missing tricks:
Scales and color

Blurred outputs and skip connections

Bad gradients and residual connections

Optimization tricks

Scale and color
Input scales:
 Helpful to scale, offset pixel values so that mean is zero and

standard deviation is one

Output scales:
 Real pixels are in range [0, 1]
 How do we force output to be like this?
 Options:
 map value to range
 penalize over/under
 bit of both

Value to range

Terrible idea:

 NO GRADIENT when you need it!

Value to range

Sigmoid:

 but this creates gradient problems when output close to zero
or one

Tanh:
 x -> [-1, 1] and easy to get to [0, 1]
 similar gradient problems

Penalties

Combination

Skip Connections:

Skip Connections:

Normalization:

Batch normalization

Batch normalization
But we don’t know the mean and standard deviation!
And it keeps changing during training anyhow!

Strategy:
 Use the mean and standard deviation of the last batch at training time
 At test time, use constants (last seen mean/sd)
 API looks after this housekeeping

Landmine:
 You have to tell the networks when you switch from train to test
 If you don’t they work badly

