
Last blocks:
Build an encoder and a decoder to:

 Accept noisy image, produce clean version

By:

 Constructing loss
 Applying SGD to get minimal loss on training data

Using various tricks to get good behavior

Now change what the decoder does…
An ”image like” thing
 may have the same resolution as the image
 continuous
 lots of examples
 can be predicted from an image (but how do we know?)

Examples:
 depth
 normal
 defogged image
 superresolution
 lots of others..

New recipe, depth case

Procedure:
 find many training pairs (image, depth)
 adjust filters so that
 Decode(Encode(image)) is close to depth
 on average, over pairs
 hope that this generalizes to new images

Result:
 Single image depth predictor

The U-Net

Originally
 a particular architecture
Increasingly
 an encoder followed by a decoder

The original U-net

This doesn’t
have to be a
segmentation

Depth from single image

Data example from NYUV2

What should a depth predictor predict?

Absolute depth:
 Might be very difficult to get right
 compare:
 zoomed picture of a doll-house room
 picture of real room

Relative depth:
 depth up to per-image scale
 more likely to get this right, but harder to use

Scale and error

Nearby objects are more interesting than distant ones
 you collide with them first

Want smaller error in small depths than in large depths
 squared error tends to yield small errors in large predictions

Relative error = error/(true value)

Want smaller relative error in small depths, too

What should a depth predictor predict?

Disparity = (1/depth)

Losses

Depth predictors work really well

Evaluating depth predictions
Absrel

Delta

Rough SOTA

Generally, faster is less accurate
 (good sign that payoff makes sense)

