
Last block:
Build an encoder and a decoder to:

 Accept noisy image, produce clean version

By:

 Constructing loss
 Applying SGD to get minimal loss on training data

Housekeeping
There is a great deal of housekeeping:

 If you build your own from scratch, you will suffer (but learn)
 and it won’t work all that well (missing tricks)

 Use an API (list in notes)

 Build from someone else’s code (Github, Huggingface)

Missing tricks:
Scales and color

Blurred outputs and skip connections

Bad gradients and residual connections

Optimization tricks

Scale and color
Input scales:
 Helpful to scale, offset pixel values so that mean is zero and

standard deviation is one

Output scales:
 Real pixels are in range [0, 1]
 How do we force output to be like this?
 Options:
 map value to range
 penalize over/under
 bit of both

Value to range

Terrible idea:

 NO GRADIENT when you need it!

Value to range

Sigmoid:

 but this creates gradient problems when output close to zero
or one

Tanh:
 x -> [-1, 1] and easy to get to [0, 1]
 similar gradient problems

Penalties

Combination

Skip Connections:

Skip Connections:

Normalization:

Batch normalization

Batch normalization
But we don’t know the mean and standard deviation!
And it keeps changing during training anyhow!

Strategy:
 Use the mean and standard deviation of the last batch at training time
 At test time, use constants (last seen mean/sd)
 API looks after this housekeeping

Landmine:
 You have to tell the networks when you switch from train to test
 If you don’t they work badly

Evaluating the gradient can present problems

Residual connections

Idea:
 Allow information to skip layers so there is always some reliable gradient

Procedure:
 For some layers, add input to output
 Issue: output might be a different size
 Response: use a projection

Residual connections: Simple example

Residual connections: Simple example

Residual blocks for encoder
in, scale, out, stride are parameters

Convolutional layer

ReLUBatch normalization

Residual blocks for decoder
in, scale, out are parameters

Convolutional layer

ReLU

Composing these blocks...

Encoder block

Decoder block
Convolutional layer

Optimization
Actually, gradient descent is a bad idea....

Gradient is bad, algebra

Rotating and translating function doesn’t help

changes in sign of variables, gradients are a sign of trouble.

Momentum

A variety of other optimization tricks available
RMSProp
AdaGrad
Adam

Adam is favored.

Experience:
 Adam is best for fast descent and quite good models
 SGD for robust models, but slow
 (Adam for papers, SGD for production models)

Shallow autoencoder

Encoder block

Decoder block
Convolutional layer

Deeper autoencoder

Example

Notice:
 skip helps, a lot
 deep helps a little

Detail windows

Notice:
 skip helps, a lot
 deep helps a little

