Last block:

Build an encoder and a decoder to:

Accept noisy image, produce clean version

By:

Constructing loss
Applying SGD to get minimal loss on training data

Housekeeping

There is a great deal of housekeeping:

If you build your own from scratch, you will suffer (but learn)
and it won’t work all that well (missing tricks)

Use an API (list in notes)

Build from someone else’s code (Github, Huggingface)

Missing tricks:

Scales and color
Blurred outputs and skip connections
Bad gradients and residual connections

Optimization tricks

Scale and color

Input scales:

Helpful to scale, offset pixel values so that mean is zero and
standard deviation is one

Output scales:
Real pixels are in range [0, 1]
How do we force output to be like this?
Options:
map value to range

penalize over/under
bit of both

Value to range

Terrible idea:

You might think that using
f(x) = ReLU(xz) — ReLU(x — 1)

would be a good idea (because it maps any z to the range [0,1]). In fact, it is a
terrible idea, because once the output is outside that range, there is no gradient to
push it back into the range (Section 16.3.1; exercises).

NO GRADIENT when you need it!

Value to range

Sigmoid:

sigmoid(z) =

but this creates gradient problems when output close to zero
or one

Tanh:
x -> [-1, 1] and easy to get to [0, 1]
similar gradient problems

Penalties

A second strategy is to accept the output of the convolutional layer, but
penalize values that appear outside the range you want with a loss term. For
example, apply the loss

Lud(:l‘-) = 11?2]1[1.<0] + (x — 1)2]1[1>1].

Combination

It is often useful to mix these strategies. For example, a final layer that applies
f(z) = a(tanh(z) + b)

will map x to the range (a(b—1),a(b+ 1)). If you choose b <1 and a > 1/(b+ 1),
then the output can be below zero (but not much) and above one (but not much).
Further, the gradients won’t be too small at zero or one. You can then push the
outputs to be in that range with a penalty term.

Skip Connections:

An important difficulty presented by stacking many convolutional layers is that
any feature produced by the encoder necessarily depends on a fairly large receptive
field. This can make it difficult to produce reconstructions with sharp edges. A
feature that depends on a very small neighborhood could provide enough informa-
tion to place an edge accurately — for example, report the gradient of the image.
If the receptive field is large, constructing a very local feature that isn’t somewhat
smoothed will require a set of weights that ignores many or most of the pixel values
in the receptive field, which will be difficult to achieve. However, features with large
receptive fields may be necessar to denoise, because they can observe long-range
trends in the image.

Skip Connections:

Normalization:

Numbers with large magnitude in a neural network cause problems. Imagine some
input to some unit is big and the weight applied to that input is small. Then a

single gradient step could cause the weight to change sign, and the ReLU might
cause the corresponding output to swing between strongly positive and zero. This
can cause training problems, because the gradient will be a poor predictor of what
will actually happen to the output. Ideally, relatively few values at the input of
any layer will have large absolute values. A new layer, sometimes called a batch

normalization layer, can be inserted between two existing layers to ensure this
happens.

Batch normalization

Write Z for the input of this layer, which is a X x Y X F' block of features,
and O for its output, which is a block of features of the same dimension. The layer
has two vectors of parameters, v and 3, each of dimension F. Write +; for the
i'th component of v, etc. Assume we know the mean (my) and standard deviation
(sk) of each feature in Z computed over the whole dataset and over the spatial
dimensions. Write € for a small positive number chosen to avoid divide-by-zero.
The data block U, with ijk’th component

(Iijk - mk)
(sk +€)

Uik =

will tend to have small magnitude numbers in it, both positive and negative. The
mean of each feature in this block should be about zero, because it is close to the
mean over all blocks. The standard deviation of each feature in this block should
be about one, because it is close to the standard deviation over all blocks. Now
compute

Oijr = Yelhijx + Br
and notice that O could be the same as Z (set v = sk and S = mg). The output

of this layer is a differentiable function of v and 3, which can be adjusted to achieve
the best performance.

Batch normalization

But we don’t know the mean and standard deviation!
And it keeps changing during training anyhow!

Strategy:
Use the mean and standard deviation of the last batch at training time
At test time, use constants (last seen mean/sd)
APl looks after this housekeeping

Landmine:
You have to tell the networks when you switch from train to test

If you don’t they work badly

Evaluating the gradient can present problems

Image R 1

Residual connections

|dea:
Allow information to skip layers so there is always some reliable gradient

Procedure:
For some layers, add input to output
Issue: output might be a different size
Response: use a projection

Residual connections: Simple example

Now write Ry (+;0w) = Vi + Ly (+; 6). Imagine stacking three such layers to
get

By = R3(Bs3;03)
B3 = Ry(Bs;0>)
By = Ri(Bi;0,)
B, = 1.

In the simplest case, where V,, happens to be the identity, this is

By = Bs+ L3(Bs3;03)
By + Ly(B2;02)
By + Li(By;61)
B = 1

F ¥
ol

Residual connections: Simple example

—

Residual blocks for encoder

in, scale, out, stride are parameters
Convolutional layer

in, scale*out,
3, stride, 1

o
=
S
o
=
o
*
=
<
Q
w

n, out,
1, stride, 0

Batch normalization RelU

Residual blocks for decoder

in, scale, out are parameters
Convolutional layer

scale*out, out,

1.1.0

-
o
o

*
Q

—
<
Q
w2
g‘\

. —

—
—
on

RelLU

Composing these blocks...

32,1, 1, 1,0

I

Convolutional layer
Decoder block

Encoder block

Optimization

Actually, gradient descent is a bad idea....

//\\

4

Gradient is bad, algebra

Here is an example in algebra. Consider f(x,y) = (1/2)(ex? + 3?), where € is a
small positive number. The gradient at (x,y) is (ex,y). For simplicity, use a fixed

learning rate 7, so
[[I;(T)] o [(1 — en)w(r_l)]
y(r) (1=ny=b |

Start at, say, (z(?),y(©) and repeatedly go downhill along the gradient; you will
travel very slowly to your destination. You can show that

[2(7)] B [(1 —en)z®]

yr) 1—=n)ry@ |

The problem is that the gradient in y is quite large (so y must change quickly) and
the gradient in z is small (so x changes slowly). In turn, for steps in y to converge
requires |1 — n| < 1; but for steps in x to converge requires only the much weaker
constraint |1 — en| < 1. Choose the largest 1 you dare for the y constraint. The y

value will very quickly have small magnitude, though its sign will change with each
step. But the x steps will move closer to the right spot only extremely slowly.

Rotating and translating function doesn’t help

/

.

A

changes in sign of variables, gradients are a sign of trouble.

Va NG
N

Y

Momentum

Parameters need to be discouraged from “zig-zagging” as in the example above.
In these examples, the problem is caused by components of the gradient changing
sign from step to step. It is natural to try and smooth the gradient. Momentum
forms a moving average of the gradient. Construct a vector v, the same size as the
gradient, and initialize this to zero. Choose a positive number 4 < 1. Then iterate

gt () _ (1)

Notice that, in this case, the update is an average of all past gradients, each weighted
by a power of u. If i is small, then only relatively recent gradients will participate
in the average, and there will be less smoothing. Larger u lead to more smoothing.
A typical value is p = 0.9. It is reasonable to make the learning rate go down
with epoch when you use momentum, but keep in mind that a very large p will
mean you need to take several steps before the effect of a change in learning rate
shows. Correctly implementing weight decay requires care when momentum is
present (exercises).

A variety of other optimization tricks available

RMSProp
AdaGrad
Adam

Adam is favored.

Experience:
Adam is best for fast descent and quite good models
SGD for robust models, but slow
(Adam for papers, SGD for production models)

Shallow autoencoder

32,1, 1, 1,0

I

Convolutional layer
Decoder block

Encoder block

Deeper autoencoder

x2

|

Upsampling (bilinear)

32,1,1,1,0

Stack in feature dimension T
Convolution (input, output, kernel, stride, padding)

Salt and

Exa m p I e Clean pepper Gaussian Blur Knockout

“dNSd

Notice: PR
skip helps, a lot él f
deep helps a little

SIy) {(p1s) uBdN

3]

—

I~~~

[\)

= o0

= =
7)

o Q
Z

[y}

- - —— - o - - ~ O\

S B gua TPl P wve 0 v S a5, 7

: 1% o 25 N0 AN o Ca R B

2 o S

'C_d = - — ___‘_"—-q"—.'—‘_ 'h

e — Y | ———

= F
8]

w

o

" —~

W ot

o - 2005 XS Fe

e N
L Al o B { 2

Both

Salt and

Detall WlndOWS Clean pepper Gaussian Blur Knockout
Notice: ~
skip helps, a lot é

deep helps a little

Shallow

Both

